
G-ALP: Rethinking Light-weight Encodings for GPUs
Sven Hepkema

sven.hielke.hepkema@cwi.nl
CWI

Azim Afroozeh
azim@cwi.nl

CWI

Charlotte Felius
felius@cwi.nl

CWI

Peter Boncz
boncz@cwi.nl

CWI

Stefan Manegold
stefan.manegold@cwi.nl

CWI

Abstract
This paper introduces G-ALP, a GPU-optimized version of ALP,
which is a recent and state-of-the-art compression scheme for
floating-point. This GPU-optimization is based on two core ideas.
First, all parts of the decoding processmust be fully data-parallelized.
In this paper, we fully data-parallelize exception patching, which
typically applies to only 1% of the data. While patching has negligi-
ble performance cost on CPUs, it can become the main bottleneck
on GPUs if it is not data-parallel. Second, the decoding API must
minimize its register footprint, a highly scarce resource on GPUs,
and hence deliver just one value-at-a-time. Our unique aim is to
integrate G-ALP decoding into GPU kernels that consume data
from global memory, rather than let decompression be a separate
kernel. We consider these two ideas general guidelines for future
GPU-optimized lightweight encodings, and a significant evolution
of our new FastLanes file format, making it GPU-friendly. We ex-
tensively test G-ALP in a series of microbenchmarks and evaluate
its performance on an NVIDIA V100 GPU and an NVIDIA RTX4070
Super Ti GPU, demonstrating superior performance compared to
NVIDIA nvCOMP and ndzip in both decoding and filtering queries.

CCS Concepts
• Information systems→ Data compression.

Keywords
Compression, Encodings, Data-Parallel, GPU, Floating-Point, Fast-
Lanes, ALP, G-ALP
ACM Reference Format:
Sven Hepkema, Azim Afroozeh, Charlotte Felius, Peter Boncz, and Stefan
Manegold. 2025. G-ALP: Rethinking Light-weight Encodings for GPUs. In
21st International Workshop on Data Management on New Hardware (DaMoN
’25), June 22–27, 2025, Berlin, Germany. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3736227.3736242

1 Introduction
FastLanes is a project initiated at CWI, designed as a foundation
for next-generation big data formats. With release v0.1 [1], Fast-
Lanes provides an open-source, dependency-free file format, im-
plemented in C++. FastLanes is fully data-parallelized by utilizing
the novel 1024-bit interleaved and Unified Transposed Layout [2],

This work is licensed under a Creative Commons Attribution 4.0 International License.
DaMoN ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1940-0/2025/06
https://doi.org/10.1145/3736227.3736242

ALP

G-A
LP

Thru
st

nv-
zs

td

nv-
LZ4

nv-
Snap

py

nv-
Def

lat
e

nv-
GDef

lat
e

nv-
Bitc

om
p

nv-
Bitc

om
pSpar

se
ndzip

Compressor

10

100

1000

F
il

te
r 

T
h

ro
u

g
h

p
u

t 
G

B
/s

 (
lo

g
 s

ca
le

)

Figure 1: Throughput in GB/s of a filter-query executed with
a V100 GPU on real-world data (double-precision floating-
point columns from the real-world ALP datasets), stored with
various compression schemes. The y-axis uses a logarithmic
scale. All compressors implemented by NVIDIA are prefixed
with nv. This filter benchmark runs on compressed data, re-
quiring decompression before the filter is executed, except
for G-ALP, which can filter compressed data directly. nv-
zstd achieves a similar compression ratio as G-ALP, but has
54.2x slower filter throughput. G-ALP achieves a 34x higher
throughput than the baseline Thrust, which only executes
the filter without any compression. This shows that data
processing kernels can be accelerated by integrating decom-
pression in them, as it reduces bandwidth needs.

enabling fully data-parallel decoding even with scalar code on the
CPU. It significantly outperforms the state-of-the-art, achieving an
80× speedup on the M1 processor compared to Parquet while also
achieving a 40% better compression ratio.
Furthermore, we addressed the need for a data-parallel encoding
for floating-point data by incorporating our novel decoding scheme,
ALP [4]. ALP encodes floating-point data by mapping it to the in-
teger domain while storing a small amount of metadata to convert
floating-point values to integers. This conversion consists of two
multiplications and one cast operation, which can be fully data-
parallelized. The resulting integers are then further compressed
using the FastLanes Frame of Reference (FFOR). We observed that

https://doi.org/10.1145/3736227.3736242
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3736227.3736242


DaMoN ’25, June 22–27, 2025, Berlin, Germany Hepkema et al.

approximately one percent of double-precision values cannot be
mapped to integers. Therefore, we separate these values, referred
to as exceptions, from the main data and encode them separately
using a patching mechanism [25]. This mechanism reinserts excep-
tions during decoding with negligible overhead in terms of both
compression ratio and decoding speed, as exceptions occur very
rarely. Combining ALP with FFOR and Exception patching uses
the Expression Encoding feature of Fastlanes, in which multiple
light-weight compression methods can be cascaded.

Designing a new analytical file format like FastLanes, should
take into account AI workloads, and thereforeGPU based decoding
and, to a lesser extent, encoding. Processing highly compressed
data on the GPU is particularly attractive, as GPUs typically have
smaller RAM (“global memory”) than the host CPU, meaning that
storing compressed data alleviates a capacity bottleneck. Further-
more, data is transferred to the GPU over the PCIe bus, so reducing
the amount of data moved through compression also helps mitigate
this bottleneck. The experiences in this paper with adapting ALP
to GPUs in G-ALP illustrate that GPUs can benefit strongly from
small changes in compressed data-layouts. Therefore we think that
there are broader lessons to be learned from this paper, and we
intend to apply these in the next versions of FastLanes, also for
other compression methods.

In our initial work on extending FastLanes to the GPU [3], we
demonstrated that data-parallel encodings are key to utilizing the
massive parallelism of the GPU. However, we observed that our
API, optimized for the vectorized execution model—the most widely
adopted execution model on the CPU—forces GPU kernels to mate-
rialize 32 values per thread per column, which can easily become a
bottleneck, as the amount of nearby high throughput memory per
thread (registers/sharedmemory/L1 cache) is significantlymore lim-
ited on the GPU compared to the CPU. Therefore, we adjusted the
FastLanes API to enable even more fine-grained decoding, allowing
16, 8, and 4 values per thread. We observed that this modification
was crucial for achieving high occupancy on SSB benchmarks run-
ning on a state-of-the-art academic database, Crystal [22].

In this paper, we introduce G-ALP, a GPU-friendly version
of ALP with two optimizations. First, we propose a novel data-
parallelized layout for storing exceptions, allowing the GPU to
reinsert exceptions entirely in parallel. Second, we provide a flexi-
ble API for delivering decoded values, ranging from one value at a
time per thread—offering the lowest possible number of material-
ized values to ensure minimal local memory usage for any library
using FastLanes—to 32 values at a time per thread, providing a more
versatile API with different granularities.

Contributions. Our main contributions are:

• A novel data layout for storing exceptions, fully data-parallel,
enabling GPU threads to reinsert exceptions in parallel.

• The design and implementation of G-ALP, a GPU-friendly
version of ALP with a data-parallel layout for exceptions
and a novel API, enabling one-value-per-thread processing
to minimize pressure on users of G-ALP.

• Open-sourcing the implementation of G-ALP1.

1https://github.com/cwida/FastLanesGpu-Damon2025

• An extensive set of microbenchmarks used to fully optimize
G-ALP.

• An evaluation against nvCOMP, the state-of-the-art com-
pression framework developed by NVIDIA, demonstrating
the superior performance of G-ALP in both decoding and
aggregation queries.

Outline. We begin by explaining key aspects of GPUs in Section 2.
Next, we present the design of G-ALP in Section 4, followed by our
evaluation results in Section 5. We then discuss related work, with
an emphasis on nvCOMP, in Section 6. Finally, we conclude our
work in Section 7 and outline our vision in the future work section,
Section 8.

2 GPU
In this section, first the general hardware structure of NVIDIA
GPUs is described. The section continues with an explanation of
how instructions are issued and executed. The section concludes
with how instruction-level parallelism (ILP) can be used to reduce
the impact of instruction latencies on performance.

SIMT. An NVIDIA GPU consists of a number of streaming mul-
tiprocessors (SM). Each SM consists of warps. Warps consist of 32
threads. All threads in the same warp execute the same instruction;
NVIDIA calls this the single instruction, multiple threads (SIMT)
model. CUDA, NVIDIA’s GPU programming language, enables de-
velopers to program the GPU as if they were programming a single,
independent thread. However, because all threads within a warp
execute the same instruction, it is more clear to think of instructions
executed by the GPU as vector instructions [24].

Instruction pipelines. A SM contains a set of heterogeneous in-
struction pipelines. Each pipeline only executes certain classes of
instructions, such as memory instructions or floating point arith-
metic. Some classes of instructions can have multiple pipelines [24].
Warps themselves do not execute instruction, they issue these to
the pipelines, which are shared by multiple warps. This sharing of
pipelines is somewhat comparable to hyperthreading on CPUs. The
SM’s warps are distributed among multiple instruction issuers, each
of which control access to a set of pipelines. Each clock cycle, the
instruction issuer picks a warp to issue an instruction [7]. When
the warp is not able to issue an instruction, the warp is considered
stalled. A warp might not be able to issue an instruction due to data
hazards or structural hazards, then the warp needs to wait for the
result of a previously issued instruction to complete. When a warp
stalls, the instruction issuer will pick another, non-stalled warp to
issue an instruction [6, 7, 11].

Occupancy. SMs contain a fixed amount of resources that are
shared among all warps. A kernel might be programmed in such
a way that the SM needs to allocate a large amount of resources
per warp. In that case the SM can disable some warps, lowering the
occupancy, the ratio of active warps. If the number of active warps
is relatively low, there is a smaller chance that the instruction issuer
can find a non-stalled warp to issue an instruction and saturate the
pipelines. This can slow down the execution of kernels.

Hiding latency. Reading memory from the GPU’s RAM has high
latency, in the order of hundreds of cycles [7]. GPUs can bypass



G-ALP: Rethinking Light-weight Encodings for GPUs DaMoN ’25, June 22–27, 2025, Berlin, Germany

this latency by switching warps, executing instructions from other
warps while some of the warps are waiting for the results of their
memory access, this is called latency-hiding [14]. In some situations,
the latency of a memory access can be completely hidden, if there
are enough other warps that are able to issue instructions.
Instruction-level parallelism (ILP). Another way of hiding la-
tency is by enabling warps to issue instructions more often. By
increasing ILP, a kernel’s instructions can contain less data hazards
and control hazards. Then, warps do not have to stall as often due
to these hazards. Because warps do not stall as often, the instruc-
tion issuer is more likely to be able to pick an active, non-stalled
warp, and saturate the instruction pipelines. ILP can be increased
by replacing branches with branchless code, by using different algo-
rithms, or by processing multiple values in parallel. ILP only helps
when latency is a bottleneck, as when arithmetic throughput or
memory bandwidth is the bottleneck, the instruction pipelines are
already saturated [23].

3 FastLanes File Format
In this section, we briefly explain Light-Weight Compression (LWC)
methods and the internals of the FastLanes file format [2], as well
as the the design of the ALP compression algorithm [4]

3.1 Light-Weight Compression Methods
Light-weight compression methods, or encodings, are used to re-
duce memory footprint. LWCs are usually more efficient in terms
of decoding speed compared to most general purpose compression
methods such as LZ4. LWCs exploit specific characteristics of the
data stored, such as the type and the domain, as well as patterns
in the data. In a data processing pipeline, the time spent decoding
compressed data should ideally be negligible compared to the pro-
cessing time of the actual data. It therefore is important that we
decrease time spent in decoding as much as possible. For example,
in Bitpacking, the leading zero bits are omitted to represent the
data in a more compact form. This is widely used as a last encod-
ing and thus first decoding step. Other frequently used encoding
schemes are, e.g., Dictionary Encoding, Run Length Encoding (RLE),
DELTA encoding and Frame-Of-Reference (FOR). Dictionary en-
coding groups identical values together into a single bucket, which
is mainly effective when the cardinality within a column is low,
but values are uniformly distributed (i.e., when there are many
identical values). RLE is preferred when there are many runs of
subsequent values that are identical, while DELTA encoding is
more useful if subsequent values have small differences (e.g., an
increasing ID). FOR encoding applies a Frame-of-Reference to each
value. For example, a sequence of 1000, 1003, 1005, 1002 can have a
base of 1000, which transforms the resulting values into 0, 3, 5 and 2
respectively. These FOR-encoded values are now a good candidate
for bit-packing as a final encoding step, because we can represent
the encoded values in 3 bits, if we separate the base.

3.2 FastLanes Internals
FastLanes is a novel file format [2] that efficiently encodes/decodes
values on the CPU targeting (virtual) 1024-bit SIMD registers with
8-, 16-, 32- and 64-bits lanes, by providing data parallel encodings.
The source code of FastLanes is scalar C++, which allows compilers

to auto-vectorize CPU code and exploit the SIMD parallelism.

Interleaving. To be able to efficiently decode multiple values per
CPU cycle, FastLanes makes use of interleaving, i.e., it distributes
data round-robin into separate lanes. Each SIMD lane decodes one
value each cycle, thanks to interleaving having stored adjacent
values in distinct lanes, making bit-unpacking fully data-parallel.
This allows the original value sequence to be decoded on a CPU at
staggering speed (e.g., 60 values per core per cycle).

Unified Transposed Layout. Second, FastLanes proposes a Uni-
fied Transposed Layout to avoid data dependencies that occur in,
e.g., DELTA decoding, where each subsequent element is dependent
on its predecessor. FastLanes further maps Run-Length Encoding
(RLE) to dictionary encoding and applies DELTA encoding to the
indexes of the repeated values, herewith enabling to use the Uni-
fied Transposed Layout for faster RLE decoding. Since FastLanes is
able to remove the data-dependencies, this results in an ultra-high
decoding speed.

Expression Encoding. The ultra-high decoding speed leads to the
third main addition: FastLanes is making use of cascaded encodings,
also referred to as Expression Encoding. Cascaded encoding refers
to multiple lightweight encodings applied on top of each other,
that encode or decode a single value. An example is fusing FOR and
DELTA encoding, which in FastLanes leads to a higher compression
ratio while achieving a fast decoding speed. It has been shown
that cascaded encodings achieve compression ratios comparable to
Parquet and LZ4 [10], which our findings also support.

Operators. FastLanes introduces novel operators which encode
data based on existing light-weight encodings, in such a way that
it leverages vectorized processing, accelerating the decompression
speed. For example, FastLanes introduces a Fused-FOR (FFOR)
operator, which fuses bit-unpacking with FOR-decoding in a single
kernel. The main advantage from fusing is that this avoids an addi-
tional LOAD and STORE instruction. This operator stores data in a
FOR vector, where all values except the base are bit-packed. Thus,
using FFOR eliminates the need for a separate bit-packing operator.

FastLanes on the GPU. In GPU data processing, Single Instruc-
tion Multiple Threads (SIMT) parallelism is used, allowing us to
map each FastLanes (SIMD) lane onto a single thread on the GPU.
FastLanes encodes 1024 values together in a data segment (=a vec-
tor). Within a GPU thread, FastLanes can therefore decode one or
multiple (up to 32) values [3].

3.3 Adaptive Lossless Floating-point
Compression (ALP)

ALP is a novel, vectorized, adaptive, lossless encoding for floats- and
doubles [4]. Themainmotivation behindALP is the observation that
most floating-point data in databases have limited precision, which
means that they often can be cast to integers. By casting floating
points to integers, the usage of light-weight compression methods
is eased – rounding errors in floating-point arithmetic make this



DaMoN ’25, June 22–27, 2025, Berlin, Germany Hepkema et al.

problematic otherwise. For the values that cannot be cast to an in-
teger, ALP designed a separate exception patching mechanism. ALP
is written in scalar C++ code, which triggers auto-vectorization
by the compiler, and operates on arrays (vectors) of 1024 values.
The encoding (𝐴𝐿𝑃𝑒𝑛𝑐 ) and decoding (𝐴𝐿𝑃𝑑𝑒𝑐 ) procedures of ALP
are based on the formulas (1) and (2), respectively, where 𝑒 is an
exponent and 𝑓 refers to an inverse factor which is introduced to
remove trailing 0-digits. Within a 1024 value vector, ALP aims to
use the same exponent and factor for the whole vector. In addition,
ALP always verifies whether the original value can be recovered. If
it detects that the original double cannot be retrieved by the given
formulas with the corresponding exponent and factor, it will encode
this value as an exception.

𝐴𝐿𝑃𝑒𝑛𝑐 = 𝑟𝑜𝑢𝑛𝑑 (𝑛 ∗ 10𝑒 ∗ 10−𝑓 ) (1)
𝐴𝐿𝑃𝑑𝑒𝑐 = 𝑑 ∗ 10𝑓 ∗ 10−𝑒 (2)

ALP Design. There are four key design points that ALP leverages.
The first (i) is vectorized compression. This is achieved by decoding
1024 values at the same time within one vector, while using the
same exponent and factor. As shown in Formula (1), ALP first mul-
tiplies a value by exponent 𝑒 to get a large (int32 or int64) integer,
after which it is reduced with a factor 𝑓 to get a small number again.
For each vector, the same metadata (exponent, factor and bitwidth)
are stored, followed by the bit-packed values and the exceptions.
Since this incurs only little control flow and values are en/decoded
per vector, ALP easily auto-vectorizes. The second key design point
(ii) is fast rounding, for which ALP designed its own procedure that
is SIMD-friendly. The third point (iii) is how ALP handles exceptions.
Since ALP uses vectorized processing, values that are exceptions are
replaced by an encoded value in their original position in the vector,
while exceptions itself are stored separately in a different segment.
Note that it is important to keep track of the original positions of
these exceptions, which therefore are stored in another different
segment by ALP. The last main design point (iv) is that ALP uses
FFOR, which fuses FOR- and bit-packing, to encode doubles within
a 1024-value vector. Note that ALP itself does not actually encode
data, but it rather transforms data such that it can subsequently
exploit existing light-weight encoding schemes.

Why exception patching for ALP is hard on the GPU. In ALP
on the CPU, a separate loop is used to reinsert all separately stored
exceptions in their original positions in the vector. This loop is
usually cheap because exceptions are rare, and it avoids branching,
as it does not require to check for every value whether it is an
exception or not. On the GPU however we aim to decode a sin-
gle value-at-a-time. This significantly complicates decompression,
especially on GPUs. For example, if each thread in a warp would
have to check for each value whether it is an exception or not, each
thread would need to scan the exception array until it reaches a po-
sition that is equal or higher to its current position. Such a branchy
loop is not GPU-friendly at all, and will cause branch divergence.
In practice, this will take longer than the actual decoding of the
value and should thus be avoided.

4 G-ALP
G-ALP is a floating-point data compression scheme designed to
optimize FastLanes ALP (referred to as CPU-ALP) for GPUs, built
upon two core ideas:

All parts of decoding on theGPUmust be fully data-parallelized,
even negligible ones. For example, exception patching, which ac-
counts for only one percent of the data, must also be data-parallelized
because GPUs perform poorly on any sequential workload, even
at such a small scale. In contrast, CPUs are designed to handle
sequential workloads efficiently, which is precisely what CPU-ALP
is designed for.

The decoding API should decode one value per thread. By
decoding only a single value per thread for each kernel call, we
minimize additional pressure on the registers of libraries using the
FastLanes reader to an absolute minimum. In the ALP implementa-
tion each thread first decodes all 32 values in a lane, and after that
patches all exceptions by iterating over each position and check-
ing whether the position exists in the exception list. With single
value decoding, a single value is decoded, and then immediately
the decoder checks whether the position of that value occurs in the
exception list and patched if needed. The resulting value is then
returned to the caller of the decoding function. When the decoding
function is called again, the next value in the lane is decoded.

Overview. The encoding process of G-ALP is similar to CPU-ALP,
with one key difference: a data-parallel exception layout, which is
explained below. In G-ALP, each set of 1024 floating-point values is
considered a single encoding/decoding unit. During encoding, these
1024 floating-point values are mapped to integers, which are further
compressed using FFOR, along with metadata specifying how to
cast these integers back to doubles, which is later used during
decoding. The decoding process follows FastLanes’ 1024-bit ISA [2],
where each lane corresponds to a separate thread. Conceptually,
the decoding process on the GPU can be visualized as 32 threads,
each decoding one value at a time for 32 iterations, resulting in a
total of 32 × 32 = 1024 decoded values.

Data-Parallel Exception Layout. G-ALP stores exceptions in
a fully data-parallel layout. This is implemented as an additional
step at the end of ALP encoding, where exceptions are reordered
into a data-parallel format. In this section we will study the layout
for 32-bit floating-point data, but the specification can be trivially
changed to accommodate 64-bit floating-point data as well.

The key idea behind this new layout is to provide each GPU
thread, responsible for decoding a specific lane in the CPU-ALP
data-parallel layout (e.g., thread 0 handling values at positions 0,
32, ..., 960, 992), with direct access to all exceptions occurring in its
lane in a single location. This eliminates the need for each thread to
traverse the entire exception list to locate its exceptions, enabling
fully parallel exception handling.

For each thread, after decoding a value, the next exception po-
sition is checked. If this position corresponds to the current value
being decoded, the thread returns the exception; otherwise, it re-
turns the decoded value.

For this data-parallel layout, we first store all exceptions for
thread 0, corresponding to lane 0, which consists of positions 0,



G-ALP: Rethinking Light-weight Encodings for GPUs DaMoN ’25, June 22–27, 2025, Berlin, Germany

Figure 2: Example of Data-Parallel Layout for Patching. 1) A
vector of 1024 values consists of two components for each
value: the top box represents the position of the value within
a vector, ranging from 0 to 1023, while the bottom box is
color-coded (red and green) to indicate whether the value is
an exception, with red denoting an exception. 2) The second
part illustrates exceptions per lane, where each lane contains
its own subset of exceptions. 3) The third part shows the
actual storage format for exceptions. Exceptions are stored
based on lane number, starting with lane 0, followed by lane
1, and so on. Yellow boxes represent metadata consisting of
offsets (shown by arrows) that indicate the starting position
of exceptions for each lane, as well as the number of excep-
tions denoted in the box. This structure allows each thread to
efficiently access its corresponding exception list. 4) Finally,
for comparison, we present the CPU layout of the same ex-
ception list, highlighting the structural differences between
the two layouts.

32, 64, ..., 992 sequentially. Additionally, we store 16-bit metadata
consisting of two parameters:

• Offset – indicating where the exceptions for lane 0 start.
• Count – specifying how many exceptions this lane has.

The offset and count are essential to provide each thread with
direct access to its own exceptions without further computation.
The offset can be as large as 1024, requiring 10 bits in the worst-
case scenario when all values are exceptions. Each lane can have a
maximum of 32 exceptions, requiring only 5 bits to store the count.
We use 16 bits to efficiently pack these two parameters together.

This process is repeated 31more times for threads 1 to 31. Figure 2
illustrates this layout by comparing the exception layouts of CPU-
ALP and GPU-ALP, highlighting how this design enables more
efficient decoding on GPUs.

Compression Overhead. G-ALP introduces a compression over-
head compared to ALP, arising from the additional metadata re-
quired tomake exception patching fully data-parallel. This overhead

is fixed at 16×32 = 512 bits per vector (1024 values), which translates
to 0.5 bits per value. Considering that ALP encodes double-precision
data using 21 bits, the additional 0.5-bit overhead is negligible.

Decoding. Each thread is responsible for decoding values stored
in its corresponding lane of the FastLanes layout, ranging from 0
to 31. The decoding process for a value at position 𝑋 in the lane
consists of the following steps:

(1) Apply the frame-of-reference method to decode the integer at
position 𝑋 . This involves generating the appropriate bitmask
to extract the relevant bits, followed by a right shift. If the bit-
packed value spans two words, an if condition fetches the next
word and combines the bits.

(2) Cast the decoded value to floating-point using a cast instruction.
(3) Check whether the current value is an exception. If not, deliver

the decoded floating-point; otherwise, return the exception. To
determine if a value is an exception, compare the next exception
position in the list with the position of the current value in the
lane. If they match, the value is an exception, and we move to
the next exception.

(4) Prefetch the next exception if the current value is an exception
to ensure the data is available for the next iteration.

5 Evaluation
We conducted two sets of experiments: the first set consists of
microbenchmarks to evaluate the effects of possible design choices
for optimizing ALP on the GPU, and the second set benchmarks
G-ALP against other compression schemes used for GPUs across
three important categories: compression ratio, filter throughput,
and decompression throughput.

Setup. All experiments were conducted on an AWS EC2 instance,
p3.2xlarge, equipped with an NVIDIA V100 16GB GPU, featuring
compute capability 7.0 and based on the Volta architecture, a data
center-grade GPU. The code was compiled using NVCC 12.8 and
g++-12 as the host compiler. The version of nvCOMP used was
4.2.11. An older version of g++ was chosen due to nvCOMP’s lack
of support for newer g++ versions. Additionally, some experiments
were repeated on a NVIDIA RTX4070 Super Ti GPU, which is a
consumer-grade GPU with compute capability 8.9.

Data. To ensure a fair comparison, we selected double-precision
columns from the Public BI dataset [5], as there was no single-
precision data type available, and cast them to single-precision
floats. We find PUBLIC_BI highly relevant, as it was also used in the
original design of ALP. Additionally, floating-point data columns
that would be better suited for compression with run-length encod-
ing or ALPrd were excluded from the evaluation. For the double-
precision benchmarks we reuse the dataset from ALP [4], excluding
the few high-entropy columns that were compressed using ALPrd.

Measurements. To measure throughput, we use two different
approaches: Nsight Compute Command Line Profiler 2025.1.1.0
for microbenchmarks and CUDA events for end-to-end queries
(Figure 1 and 6, and Table 1 ). CUDA events are the recommended



DaMoN ’25, June 22–27, 2025, Berlin, Germany Hepkema et al.

method for measuring multi-kernel end-to-end execution time [16]
and are also used by NVIDIA to benchmark nvCOMP [17].

Implementation. The experiments and implementation of G-ALP
are open-sourced in our repository2. The source code of ndzip
is open source as well3. The nvCOMP code is not open source;
however, we used its header files and binaries, which are freely
available from NVIDIA’s website4.

5.1 Micro Benchmarks
Single value decoding.We benchmarked GPU decoding of both
ALP and the new G-ALP, each tested with two different APIs: 1
value-at-a-time and 32 values-at-a-time. The benchmark consists of
a simple filter query on generated data while increasing the number
of columns from 1 to 10, thereby increasing register pressure, as
more results needs to be materialized. As can be seen in Figure 3a,
our new API maintains throughput close to that of a single-column
scan, even as the number of columns increases.

Furthermore, we examined achieved occupancy, as shown in
Figure 3b. When scanning multiple columns, occupancy starts to
decline, indicating that there are fewer warps concurrently active.
This limits the ability of the SM to hide the latencies of instructions,
as the SM is less likely to be able to execute an instruction from an-
other warp. For a high number of columns, the kernel’s performance
depends on how efficiently the algorithm utilizes the remaining
active warps, relying on instruction-level parallelism rather than
occupancy to hide instruction latencies. With the new one-value-
at-a-time API implementation, there is enough instruction-level
parallelism to hide instruction latencies even at very low occupancy
levels while retaining high decoding throughput.

G-ALP Optimization Performance.We conducted another mi-
crobenchmark to analyze the difference between the ALP implemen-
tation that more closely resembles the CPU implementation, and
the GPU optimized implementation of G-ALP. In this benchmark, a
filter query is repeated on generated data, where the number of ex-
ceptions per vector is varied, as shown in Figure 4. From the figure it
is clear that G-ALP has much higher decoding throughput than ALP.
Additionally, we study the effect of a micro-optimization where
the next exception that a thread will decode is buffered in advance.
This optimization increases instruction-level parallelism as reading
from the buffer in the registers has lower instruction latency than
reading from global memory. With this micro-optimization, G-ALP
can reach up to 25% higher decoding throughput for some exception
counts per stored vector of 1024 values. All implementations suffer
under higher exception counts, but a normal exception count is 10,
corresponding to a 1% exception rate.

Hardware Comparison. In Figure 5, the filter benchmark is re-
peated with a 1% exception rate on the RTX4070 GPU. This figure
shows that consumer grade GPUs perform relatively better on de-
coding float columns than double columns. The reverse is true
for datacenter GPUs. This difference is due to the different bal-
ance in arithmetic throughput for single-precision floating-point
instructions and double-precision floating-point instructions for

2https://github.com/cwida/FastLanesGpu-Damon2025
3https://github.com/celerity/ndzip
4https://developer.nvidia.com/nvcomp

1 2 3 4 5 6 7 8 9 10
Number of columns scanned in parallel

0

50

100

150

200

250

300

T
h

ro
u

gh
p

u
t 

(v
al

u
es

/c
yc

le
) ALP - 32

G-ALP - 32
ALP - 1
G-ALP - 1

(a) Throughput per decoding approach

1 2 3 4 5 6 7 8 9 10
Number of columns scanned in parallel

0%

20%

40%

60%

80%

100%

A
ch

ie
ve

d
 O

cc
u

p
an

cy
 (

%
)

(b) Occupancy per decoding approach

Figure 3: Throughput of G-ALP executing a filter query on
a V100 GPU on single-precision floating-point data with 1%
exceptions, using different APIs with varying numbers of
columns (1 to 10).Withmore columns to decode, register pres-
sure increases, and occupancy drops for all variants. G-ALP
1 value-at-a-time is the only to maintain good instruction
throughput under low occupancy, by achieving high instruc-
tion parallelism thanks to the simplicity of its kernel. G-ALP
decoding 32 values at-a-time initially profits from an efficient
templated bit-unpacking routine, but with more columns to
decode, this routine suffers under low occupancy. Both ALP
variants (1 and 32 at-a-time) need an inefficient branchy loop
for exception patching, that degrades their efficiency.

consumer-grade and datacenter-grade GPUs [12]. The figure shows
that for both GPUs it can be beneficial for memory bound kernels
to load data in compressed form, as the decoding overhead is less
than the speedup attained by being able to load less data from RAM,
as indicated by the higher than 100% filter throughput.

https://github.com/cwida/FastLanesGpu-Damon2025
https://developer.nvidia.com/nvcomp


G-ALP: Rethinking Light-weight Encodings for GPUs DaMoN ’25, June 22–27, 2025, Berlin, Germany

0 10 20 30 40 50
Exception count

0

50

100

150

200

250

300

T
h

ro
u

gh
p

u
t 

(v
al

u
es

 /
 c

yc
le

)

G-ALP
G-ALP without buffer
ALP

(a) Single-precision floating point

0 10 20 30 40 50
Exception count

0

50

100

150

200

250

300

T
h

ro
u

gh
p

u
t 

(v
al

u
es

 /
 c

yc
le

)

(b) Double-precision floating point

Figure 4: Microbenchmarks with generated data showing the impact of an increasing amount of exceptions per vector on the
decoding throughput on a V100 GPU. ALP is more heavily impacted by exceptions, degrading fast in decoding throughput
when a vector contains more exceptions. Double-precision data has lower decoding throughput in terms of values/cycle, but
each decoded value has twice as many bytes, resulting in a higher decoding throughput when calculated as GB/s.

COMPRESSOR FLOAT DOUBLE
CR RTX4070 V100 CR RTX4070 V100

Filter
(GB/s)

Decompress
(GB/s)

Filter
(GB/s)

Decompress
(GB/s)

Filter
(GB/s)

Decompress
(GB/s)

Filter
(GB/s)

Decompress
(GB/s)

ALP 1.44 241.4 235.9 138.2 124.0 3.29 459.0 276.9 673.7 280.2
G-ALP 1.41 568.5 463.5 293.5 210.6 3.25 504.3 321.3 856.8 324.7
Thrust 1.00 30.3 - 14.2 - 1.00 49.0 - 25.2 -
nv-zstd 1.74 6.3 6.4 2.3 2.4 3.11 25.8 28.8 15.8 16.5
nv-LZ4 1.27 8.3 8.3 4.3 4.4 2.27 44.2 52.3 29.9 32.4
nv-Snappy 1.37 11.8 12.0 5.7 5.8 2.25 41.8 48.6 25.1 26.6
nv-Deflate 1.54 3.3 3.4 2.0 2.0 1.53 5.5 5.6 4.4 4.5
nv-GDeflate 1.53 12.2 12.3 6.6 6.7 1.52 30.5 33.1 21.0 21.9
nv-Bitcomp 1.11 84.6 91.3 42.3 45.3 1.27 123.4 184.8 112.2 144.4
nv-BitcompSparse 1.12 108.2 119.1 53.9 59.9 1.18 136.5 207.3 148.5 209.9
ndzip 1.10 148.0 168.7 92.6 112.2 1.36 131.9 202.5 118.1 155.6

Table 1: Throughput per GPU and datatype for the filter benchmark and the decompression into RAM benchmark. Compression
ratio (CR) is constant for both benchmarks and GPUs. The float datasets are from the real-world PUBLIC_BI dataset, the double
datasets are from the real world ALP dataset. Because the float dataset was cast from double-precision columns, the exception
rate and bits per value are higher than normal, resulting in a lower compression ratio. Thrust does not use compression and is
used as a baseline, therefore Thrust is not measured in the decompression into RAM benchmark. The filter kernel for all other
compressors is implemented similarly to the G-ALP filter kernel, which is faster than a normal Thrust filter kernel. G-ALP
achieves the highest throughput in all benchmarks, and has only a slightly lower compression ratio than ALP.

5.2 End-to-End Benchmarks
We include the original ALP, where we simply map the FastLanes
1024 ISA to CUDA, to measure the extent to which our two opti-
mizations: 1) data-parallel exception handling, and 2) one-value-at-
a-time decoding API, accelerate the implementation ALP. Addition-
ally, we compare against the encodings supported by the nvCOMP

framework as the current state-of-the-art in practice and use Thrust
as a baseline to evaluate the performance of G-ALP against Thrust
when there is no compression, highlighting the benefits of load-
ing compressed data on GPUs. The last compressor we compare is
ndzip [9], a compressor focused on HPC applications where high



DaMoN ’25, June 22–27, 2025, Berlin, Germany Hepkema et al.

RTX4070 V100
GPU

0%

50%

100%

150%

200%

250%

F
il

te
r 

T
h

ro
u

g
h

p
u

t 
a

s 
%

 o
f 

R
A

M
 b

a
n

d
w

id
th

float

float

double

double

Figure 5: Filter benchmark of G-ALP on generated data with
1% exceptions per vector, for RTX 4070 and V100. The RTX
4070 is a consumer GPU has very little double-precision
floating-point instruction arithmetic throughput in com-
parison to the RAM bandwidth, and relatively much single-
precision floating-point instruction arithmetic throughput.
The V100 is a datacenter GPU and has relativelymore double-
precision floating-point instruction throughput than the
RTX4070. TheV100 has higherRAMbandwidth than theRTX
4070, but not proportionally more single-precision floating-
point instruction throughput tomatch the higher RAM band-
width, resulting in relatively low float decoding throughput.

compression throughput and high decompression throughput are
important for fast data transfers between compute nodes.

To understand how different compressors perform in comparison
to each other, we measure their throughput under two queries:

(1) Full decompression – measuring the absolute decoding
time, where data is fully written to global memory, simulat-
ing cases where G-ALP is forced to decode data completely.

(2) Filter – measuring the end-to-end time between decom-
pressing data, and evaluating a query on the decompressed
data. For Thrust, ALP and G-ALP no separate decompres-
sion kernel is required, as Thrust does not use compression,
whereas ALP and G-ALP can load compressed data directly.
This simulates the performance of G-ALP in a tile-based
execution model [22], where our API can be used to pro-
cess data immediately after decoding instead of writing it to
global memory. The filter evaluates whether a certain value
occurs in a column. A variation of the traditional filter is
performed, where not the row numbers are returned but
simply a boolean answer on whether the value occurs in
the column. We choose this variant as it requires no syn-
chronization between threads, and also requires little write
bandwidth. This in turn allows us to isolate the performance
of how fast kernels can load and decode data.

The results are shown in Table 1. As can be seen, G-ALP outper-
forms all competitors by a significant margin in both filter and de-
compression throughput, while achieving a reasonable compression
ratio for the float dataset and the highest compression ratio for the
double dataset. G-ALP especially has a large advantage in the filter
benchmarks, as with G-ALP there is no need to launch a separate
decompression kernel, saving a round-trip of non-compressed data
to and from RAM.

Figure 6 shows that G-ALP achieves the highest data decompres-
sion throughput, while achieving a reasonable compression ratio
for the float dataset and the highest compression ratio for the
double dataset. Nv-zstd achieves high compression ratios as well,
while nv-Bitcomp and nv-BitcompSparse achieve a high decom-
pression throughput, but achieve very little compression. Ndzip
achieves high decompression, but relatively little compression on
these datasets. G-ALP is designed for the data in the datasets, where
the floating-point data can be interpreted as a decimal number with
limited precision and can be casted to an int. For this kind of data
Figure 6 shows that G-ALP is a very strong option as a compressor.

6 Related Work
We consider the NVIDIA nvCOMP compression framework [13, 19–
21] to be the most relevant work related to G-ALP, as it is widely
used in practice, with a total of 608,509 downloads as of the time of
writing this paper [18]. nvCOMP supports three data types: integers,
strings, and floats (16-bit). Its encoding pool for floating-point data
consists of several heavyweight compression schemes such as LZ4,
Snappy, ZSTD, and Deflate, as well as GPU-optimized formats like
Bitcomp (proprietary and closed-source) and GDeflate.

GDeflate is a GPU-friendly variant of Deflate that introduces
interleaved Huffman coding, where codes are permuted into 32 par-
titions, though its details are vaguely explained [15]. This enables
intra-threadblock parallelism, allowing GPU threads within a block
to decode different partitions simultaneously, similar to interleaved
bit-packing in FastLanes, where data is distributed across 32 lanes.

For LZ4, nvCOMP enhances its GPU-friendliness by breaking
datasets into blocks and compressing/decompressing each block
using a thread block [20]. Within each thread block, only a single
warp is used to ensure efficient coordination among threads via
warp-level primitives.

Below, we compare nvCOMP to G-ALP:

Schema Selection.While providing a set of compression schemes,
nvCOMP does not automatically select the best scheme, leaving
this decision to the user [13]. In contrast, the FastLanes file format
automatically chooses the most suitable compression scheme, with
G-ALP being selected only if the data is decimal-like [4].

API. nvCOMP provides two different APIs: a Low-Level API and
a High-Level API [13]. The Low-Level API allows users to define
the chunk size, enabling data to be compressed in smaller chunks,
where each compressed chunk can later be decompressed in parallel
using different thread blocks, with one thread block assigned to
each compressed chunk. This approach sacrifices compression ratio
in favor of increased parallelism. The High-Level API abstracts the
chunk size selection from the user by automatically determining
the optimal chunk size. It then compresses the data as a whole,



G-ALP: Rethinking Light-weight Encodings for GPUs DaMoN ’25, June 22–27, 2025, Berlin, Germany

1.1 1.2 1.3 1.4 1.5 1.6 1.7

Compression Ratio

101

102

T
h

ro
u

gh
p

u
t 

G
B

/s
 (

lo
g 

sc
al

e)

ALPndzip

nv-LZ4

nv-zstd

nv-BitcompSparse

nv-Deflate

nv-GDeflate

G-ALP

nv-Bitcomp

nv-Snappy

(a) Single-precision floating point datasets

1.5 2.0 2.5 3.0

Compression Ratio

101

102

T
h

ro
u

gh
p

u
t 

G
B

/s
 (

lo
g 

sc
al

e)

nv-Deflate

ALP

nv-GDeflate

G-ALP

nv-Snappy

nv-BitcompSparse

nv-zstd

nv-LZ4

nv-Bitcomp

ndzip

(b) Double-precision floating point datasets

Figure 6: Full data decompression into RAM throughput per encoding scheme, for both the float and double datasets. The
compression ratio and decompression throughput for all columns in the dataset are averaged per encoding scheme. The G-ALP
encoding schemes achieve the highest single-precision floating point data decompression throughput, but a slightly lower
compression ratio due to relatively many exceptions in the float dataset columns. The G-ALP encoding schemes achieve both
the highest compression ratio as well as the highest decompression throughput of all encoding schemes for the double dataset.
This shows the potential of G-ALP as a compression scheme for floating-point data on GPUs.

adding a header at the start of the compressed data that contains
information about the chosen nvCOMP compression scheme.

In contrast, G-ALP and FastLanes do not require additional de-
coding configurations to be set by the user, making them easier to
use. We provide similar support to the High-Level API, allowing
the entire dataset to be decoded and materialized in global memory.
Additionally, we introduce an even more fine-grained Low-Level
API capable of delivering decoded data that fits into registers, the
fastest form of memory on the GPU.

ndzip. ndzip is a block-based compression scheme that is designed
and tested for scientific data for high performance computing work-
loads, to bypass data transfer bottlenecks by focusing on high com-
pression throughput and high decompression throughput, while
retaining a reasonable compression ratio [8, 9]. ndzip is also imple-
mented for CPUs, and performs well in comparison to compressors
with similar design goals in the HPC space. ndzip can compress
multidimensional data, and makes no assumptions about the kind
of data. Instead, it interprets floating-point data as integers and
decorrelates the data using a data transformation that results in
data that is easier to compress using bitpacking.

7 Conclusion
When comparing general-purpose compression schemes like zstd
and LZ4 to light-weight encodings in data processing workloads
on CPUs, the former already suffer from their block-based na-
ture—often larger than the CPU cache for decompression—and
their lack of data parallelism, preventing SIMDized decoding. On
GPUs, which have less on-chip memory and a more rigid execution
model, these problems become even bigger. Therefore, we posit that
GPU-friendly data compression should be based on data-parallel
light-weight encodings. By introducing G-ALP, the GPU-optimized
version of the recently proposed ALP floating-point encoding ALP,

we therefore also make a step towards more GPU-friendly com-
pressed data file formats. We plan on not only integrating G-ALP it-
self into our FastLanes format, but also applying the lessons learned
(e.g., data-parallel exception layouts) to its other encoding schemes.

Additionally, we have shown that by creating a GPU decoding
API that is maximally fine-grained: a single value at-a-time, we
can integrate decompressing data delivery into GPU kernels with
minimal pressure on register and sharedmemory usage. This should
be contrasted with the currently dominant approach in GPUs to
see decompression as a separate processing step or kernel. We
think that the ability to directly read compressed data can be highly
beneficial for GPU-based ML and data workloads, which can easily
be bottlenecked by memory bandwidth.

8 Future work

FastLanes GPU Reader. G-ALP is a step forward toward develop-
ing a GPU reader for the FastLanes file format. Through optimizing
G-ALP, we learned that even optimizing a single scheme requires
significant effort, indicating that optimizing the entire file format
for the GPU would be highly demanding. Therefore, we leave the
remaining work, such as supporting additional data types (e.g.,
strings and nested data types) and integrating different schemes,
for future work.

GPU Diversity. We conducted all experiments on two NVIDIA
GPUs, as detailed in Section 5. While those GPUs have similar
capabilities to the most commonly used GPUs in the cloud, we plan
to extend our benchmarking to different types of GPUs to gain
a broader perspective on heterogeneous GPU architectures. This
will enable us to design a more robust file format that performs



DaMoN ’25, June 22–27, 2025, Berlin, Germany Hepkema et al.

efficiently across all GPUs without significant performance cliffs
on any specific hardware.

New Benchmarks. To compare G-ALP with other compression
schemes, we benchmarked only scan throughput when the data
is fully materialized in GPU RAM and aggregation over a sin-
gle column to evaluate the effect of the one-value-at-a-time API.
While these benchmarks provide insight into the performance of
G-ALP compared to other schemes, they are far from comprehen-
sive. However, the lack of a standard benchmark or workload for
GPUs—similar to TPC-H for CPUs—makes this particularly chal-
lenging. We envision the creation of a new set of queries, explicitly
collected from real-world GPU use cases, to better design and un-
derstand GPU file formats.

References
[1] Azim Afroozeh. 2025. FastLanes v0.1. https://github.com/cwida/FastLanes/tree/

release_v0.1 Accessed: 2025-03-07.
[2] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout:

Decoding > 100 Billion Integers per Second with Scalar Code. Proc. VLDB Endow.
16, 9 (May 2023), 2132–2144. doi:10.14778/3598581.3598587

[3] Azim Afroozeh, Lotte Felius, and Peter Boncz. 2024. Accelerating GPU Data
Processing using FastLanes Compression. In Proceedings of the 20th International
Workshop on Data Management on New Hardware (Santiago, AA, Chile) (Da-
MoN ’24). Association for Computing Machinery, New York, NY, USA, Article 8,
11 pages. doi:10.1145/3662010.3663450

[4] AzimAfroozeh, Leonardo X. Kuffo, and Peter Boncz. 2023. ALP: Adaptive Lossless
floating-Point Compression. Proc. ACM Manag. Data 1, 4, Article 230 (Dec. 2023),
26 pages. doi:10.1145/3626717

[5] CWI DA. 2025. Public BI benchmark. https://github.com/cwida/public_bi_
benchmark

[6] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza.
2019. Dissecting the NVidia Turing T4 GPU via Microbenchmarking.
arXiv:1903.07486 [cs.DC] https://arxiv.org/abs/1903.07486

[7] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. 2018.
Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking.
arXiv:1804.06826 [cs.DC] https://arxiv.org/abs/1804.06826

[8] Fabian Knorr, Peter Thoman, and Thomas Fahringer. 2021. ndzip: A High-
Throughput Parallel Lossless Compressor for Scientific Data. 103–112. doi:10.
1109/DCC50243.2021.00018

[9] Fabian Knorr, Peter Thoman, and Thomas Fahringer. 2021. ndzip-gpu: efficient
lossless compression of scientific floating-point data on GPUs. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (St. Louis, Missouri) (SC ’21). Association for Computing Machinery,
New York, NY, USA, Article 93, 14 pages. doi:10.1145/3458817.3476224

[10] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. Btrblocks: Efficient columnar compression for data lakes. Proceedings of
the ACM on Management of Data 1, 2 (2023), 1–26.

[11] Weile Luo, Ruibo Fan, Zeyu Li, Dayou Du, Qiang Wang, and Xiaowen Chu.
2024. Benchmarking and Dissecting the Nvidia Hopper GPU Architecture.
arXiv:2402.13499 [cs.AR] https://arxiv.org/abs/2402.13499

[12] NVIDIA. 2025. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html#arithmetic-instructions NVIDIA Documentation, arithmetic instruction
throughput per compute capability..

[13] NVIDIA. 2025. Accelerating Lossless GPU Compression with New Flexible
Interfaces in NVIDIA nvcomp. https://developer.nvidia.com/blog/accelerating-
lossless-gpu-compression-with-new-flexible-interfaces-in-nvidia-nvcomp/
NVIDIA Developer Blog.

[14] NVIDIA. 2025. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#multiprocessor-level NVIDIA Docu-
mentation.

[15] NVIDIA. 2025. GDeflate: GPU-Optimized Lossless Compression. https://docs.
nvidia.com/cuda/nvcomp/gdeflate.html NVIDIA Documentation.

[16] NVIDIA. 2025. How to Implement Performance Metrics in CUDA
C/C++. https://developer.nvidia.com/blog/how-implement-performance-
metrics-cuda-cc/ NVIDIA Documentation.

[17] NVIDIA. 2025. nvCOMP Benchmarks. https://github.com/NVIDIA/nvcomp/
tree/main/benchmarks

[18] NVIDIA. 2025. nvcomp: GPU-Accelerated Compression Library. https://
anaconda.org/conda-forge/nvcomp Available on conda-forge.

[19] NVIDIA. 2025. nvcomp v2.0.0 Now Available with New Compres-
sors. https://developer.nvidia.com/blog/nvcomp-v2-0-0-now-available-with-

new-compressors/ NVIDIA Developer Blog.
[20] NVIDIA. 2025. Optimizing Data Transfer Using Lossless Compression with

nvcomp. https://developer.nvidia.com/blog/optimizing-data-transfer-using-
lossless-compression-with-nvcomp/ NVIDIA Developer Blog.

[21] NVIDIA. 2025. Using Fully Redesigned Batch API and Performance Optimizations
in nvcomp v2.1.0. https://developer.nvidia.com/blog/using-fully-redesigned-
batch-api-and-performance-optimizations-in-nvcomp-v2-1-0/ NVIDIA Devel-
oper Blog.

[22] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). 1617–1632. doi:10.1145/3318464.3380595

[23] Vasily Volkov. 2016. Understanding Latency Hiding on GPUs. Ph. D. Dissertation.
EECS Department, University of California, Berkeley. http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-143.html

[24] Vasily Volkov and James W Demmel. 2008. Benchmarking GPUs to tune dense
linear algebra. In SC’08: Proceedings of the 2008 ACM/IEEE conference on Super-
computing. IEEE, 1–11.

[25] M. Zukowski, S. Heman, N. Nes, and P. Boncz. 2006. Super-Scalar RAM-
CPU Cache Compression. In 22nd International Conference on Data Engineering
(ICDE’06). 59–59. doi:10.1109/ICDE.2006.150

https://github.com/cwida/FastLanes/tree/release_v0.1
https://github.com/cwida/FastLanes/tree/release_v0.1
https://doi.org/10.14778/3598581.3598587
https://doi.org/10.1145/3662010.3663450
https://doi.org/10.1145/3626717
https://github.com/cwida/public_bi_benchmark
https://github.com/cwida/public_bi_benchmark
https://arxiv.org/abs/1903.07486
https://arxiv.org/abs/1903.07486
https://arxiv.org/abs/1804.06826
https://arxiv.org/abs/1804.06826
https://doi.org/10.1109/DCC50243.2021.00018
https://doi.org/10.1109/DCC50243.2021.00018
https://doi.org/10.1145/3458817.3476224
https://arxiv.org/abs/2402.13499
https://arxiv.org/abs/2402.13499
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#arithmetic-instructions
https://developer.nvidia.com/blog/accelerating-lossless-gpu-compression-with-new-flexible-interfaces-in-nvidia-nvcomp/
https://developer.nvidia.com/blog/accelerating-lossless-gpu-compression-with-new-flexible-interfaces-in-nvidia-nvcomp/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#multiprocessor-level
https://docs.nvidia.com/cuda/nvcomp/gdeflate.html
https://docs.nvidia.com/cuda/nvcomp/gdeflate.html
https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/
https://developer.nvidia.com/blog/how-implement-performance-metrics-cuda-cc/
https://github.com/NVIDIA/nvcomp/tree/main/benchmarks
https://github.com/NVIDIA/nvcomp/tree/main/benchmarks
https://anaconda.org/conda-forge/nvcomp
https://anaconda.org/conda-forge/nvcomp
https://developer.nvidia.com/blog/nvcomp-v2-0-0-now-available-with-new-compressors/
https://developer.nvidia.com/blog/nvcomp-v2-0-0-now-available-with-new-compressors/
https://developer.nvidia.com/blog/optimizing-data-transfer-using-lossless-compression-with-nvcomp/
https://developer.nvidia.com/blog/optimizing-data-transfer-using-lossless-compression-with-nvcomp/
https://developer.nvidia.com/blog/using-fully-redesigned-batch-api-and-performance-optimizations-in-nvcomp-v2-1-0/
https://developer.nvidia.com/blog/using-fully-redesigned-batch-api-and-performance-optimizations-in-nvcomp-v2-1-0/
https://doi.org/10.1145/3318464.3380595
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
https://doi.org/10.1109/ICDE.2006.150

	Abstract
	1 Introduction
	2 GPU
	3 FastLanes File Format
	3.1 Light-Weight Compression Methods
	3.2 FastLanes Internals
	3.3 Adaptive Lossless Floating-point Compression (ALP)

	4 G-ALP
	5 Evaluation
	5.1 Micro Benchmarks
	5.2 End-to-End Benchmarks

	6 Related Work
	7 Conclusion
	8 Future work
	References

