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Abstract

This thesis implements G-ALP, a data-parallel compression scheme for floating-point

data that is suitable for decoding on GPUs. G-ALP expands upon ALP, which is

part of the FastLanes file format encodings. The work in this thesis develops G-ALP

by revisiting previous work on decoding FastLanes on GPUs, and by creating a new

data-parallel exception layout. G-ALP is then compared with nvCOMP, a library of

common compression schemes that were implemented for the GPU by NVIDIA. These

comparisons are done on real-world datasets, for single-precision as well as double-

precision floating-point data. G-ALP has one order of magnitude higher decompression

throughput than other compressors, while achieving a compression ratio equal to that

of the best competing compressor, zstd. Decoding throughput differences were even

higher when data was not compressed into RAM but decoded directly within a data

processing kernel. These results show that G-ALP is a viable encoding for compressing

floating-point data on the GPU. Using G-ALP, floating-point data can be compressed,

resulting in higher data transfer throughput from the CPU to the GPU, and can store

more data in the GPU’s RAM. With the fine-grained single value decoding API, the

compressed data does not have to be decompressed into RAM, but can be read directly

by a data processing kernel.



Chapter 1

Introduction

This thesis creates a decoder for decompressing floating-point data on Graphics Pro-

cessing Units (GPUs). Compression has two benefits. The first benefit is that it is

possible to store the same amount of information using less space. The second benefit

is that it is then faster to transfer this information, as less physical data needs to be

copied to transfer the same amount of information. Compression is interesting for GPU

workloads, as information needs to be transferred from the host’s RAM to the GPU

using a PCIe link with relatively low throughput, and can also store more information

in the GPU’s RAM.

There are multiple possible scenarios for decompressing data before processing it

on the GPU. In Figure 1.1 the most simple scenario is shown. The compressed data is

decompressed on the CPU, before it is transferred to the GPU and processed there. The

benefit of this approach is that it is simple, and can use common CPU decompressors.

However, the GPU part of the workload does not benefit from compression, as the data

is transferred in compressed form to the GPU, and stored in decompressed form on the

GPU.

The second scenario is depicted in Figure 1.2, showing an alternative approach where

compressed data is transferred to the GPU, and then decompressed into the GPU’s

RAM. This approach partially realizes the possible benefits of compression for GPU

workloads. The data can be transferred in compressed form, however, the data still

needs to be decompressed into the GPU’s RAM, requiring a large allocation of memory.

The third scenario in Figure 1.3 bypasses the decompression step completely. By

using an API that gives GPU kernels fine-grained, high-throughput access to the data

in compressed form, the data can be left compressed in RAM. This approach has the

advantage of both benefits of compression. Data is never transferred in decompressed

form, saving memory read throughput, and no memory is allocated for storing the

decompressed data, saving RAM.

There are many GPU workloads that could benefit from compression. Any form of

data processing where memory throughput is a bottleneck or RAM storage is a limit

1
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Figure 1.1: First scenario of GPU processing of compressed data. The compressed data
is first decompressed on the CPU, before being transferred in decompressed form over
the relatively slow PCIe link. Decompressing the data before transferring the data over
the PCIe link is slow, as the throughput of the PCIe link is limited.

could benefit. Such workloads could be AI training or inference workloads, data pro-

cessing kernels or GPU databases. The second scenario in Figure 1.2 requires RAM

to be allocated to store the fully decompressed data, but can be convenient in some

cases, as kernels that process the data do not have to be changed and can simply load

the data in non-compressed form. The third scenario in Figure 1.3 saves both memory

transfer throughput and RAM, but requires kernels to be changed to use the fine-grained

decompression API.

FastLanes[2] is a file format designed for big data online analytical processing (OLAP)

workloads. In OLAP workloads, data is recorded and written once, and then read many

times after that to analyze the data. With the FastLanes file format data can be

compressed at ratios equal to those obtained by zstd[2, 11], and decompressed at high

throughput using SIMD instructions. The central FastLanes bit-interleaved encoding

can be efficiently decoded on GPUs, even speeding up certain memory-throughput-

bound queries[4]. FastLanes has multiple encodings for different types of data. In pre-

vious work[4] one of the FastLanes encodings for integers was implemented for GPUs.

FastLanes also has encodings for floating point data, one of which is ALP[5]. No Fast-

Lanes encodings for floating-point data were implemented for GPUs yet. Therefore, this

thesis implements a GPU decoder that efficiently decodes ALP encoded data with an

unobtrusive API that offers fine-grained access to read compressed data.

2
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Figure 1.2: Second scenario of GPU processing of compressed data. The data is trans-
ferred in compressed form over the PCIe link, then the data is decompressed on the
GPU. The decompressed data is processed. This scenario is faster than the previous
scenario, as the data is transferred over the PCIe link in compressed form. However,
this scenario still requires a decompression kernel to be launched, and a large allocation
of memory to decompress the data into.
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Figure 1.3: Third scenario of GPU processing of compressed data. The data is trans-
ferred in compressed form over the PCIe link, and never decompressed into RAM. The
processing kernel can use an unobtrusive API to access the data in compressed form,
completely bypassing the decompression step. This approach does not have to allocate
memory for the decompressed data, and can also load the data into the streaming mul-
tiprocessors in compressed form, saving memory read throughput.
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Creating a decoder for decompressing floating-point data on GPUs consists of three

parts. In previous work, one of the FastLanes encodings was successfully decoded on

GPUs[4]. However, the decoding throughput of this decoder degraded when multiple

columns were decoded concurrently. (1) Therefore the first part to implement is a new

decoder that uses a new decoding approach with an API that should offer consistent

high decoding throughput with a single value granularity, no matter how many columns

are decoded simultaneously. To decode floating-point data on GPUs, an ALP GPU

decoder should be implemented. (2) The second part of this thesis implements a de-

coding technique for high throughput exception patching for GPUs. Exception patching

is an encoding technique to handle values that are outliers which are hard to compress

separately from the majority of the values. ALP uses it to handle values which cannot

be losslessly compressed using ALP’s core compression method. (3) Finally, the third

part of this thesis measures how performant ALP decoding on GPUs is. ALP decoding

should be compared to the state of the art on GPU decompression, and NVIDIA im-

plements a variety of common compression schemes in the nvCOMP library[42]. The

GPU implementation of ALP’s decoding throughput is compared to these nvCOMP

compression schemes.

1.1 Research Questions

The implementation and benchmarking of an ALP GPU decoder can be decomposed

into three research questions:

RQ 1: How should a general purpose API for single value decoding of bit-

packed data be implemented?

RQ 2: How can exceptions be efficiently patched on GPUs?

RQ 3: Can floating-point data be decoded faster with ALP than with common

GPU compression schemes?

1.2 Outline

This thesis first discusses the background of the research in Chapter 2. This background

starts with a discussion of different kinds of compression approaches and their benefits.

After that, the FastLanes file format[2] and ALP[5] are discussed. ALP is part of

FastLanes and is a compression encoding for floating-point data. Finally, the nvCOMP

library is discussed, nvCOMP is a compression library from NVIDIA that implements

common compression schemes. Then in Chapter 3 NVIDIA GPU hardware internals

are discussed. This chapter also provides an in-detail description of how programs are

executed on GPUs.
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Then the thesis continues in Chapter 4 with a discussion of how FastLanes encodings

can be decoded efficiently on GPU. First multiple decoding approaches for the core

FastLanes bitpacking encoding are discussed, and then multiple decoding approaches for

patching exceptions in ALP are discussed. This chapter also designs G-ALP, which uses

an alternative data-parallel exception layout to efficiently decode ALP encoded floating-

point data on GPUs. In Chapter 5 the throughput of each decoder and exception

patcher is extensively measured using microbenchmarks, and concludes with multiple

benchmarks which compare the throughput and compression ratio of G-ALP with the

compressors in the nvCOMP library on real-world data. Chapter 6, the final chapter,

draws conclusions from the benchmarks, provides answers to the research questions and

discusses future work.
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Chapter 2

Background

This chapter explains why compression is useful on GPUs. First the benefits of compres-

sion are discussed, and what the advantages and disadvantages are of common compres-

sion schemes that rely on heavy-weight compression. Then the benefits of light-weight

compression over heavy-weight compression are discussed. FastLanes is then introduced,

FastLanes is a new data format that combines these light-weight compression benefits

with data-parallel encodings that are ideal for processing with SIMD instructions. The

chapter continues with a section that explains why compression is useful on GPUs, how

it can speed up memory-throughput-bound kernels and why the FastLanes format is

a good fit for data decompression on GPUs. Lastly, a brief explanation of NVIDIA’s

nvCOMP and Thrust libraries is given.

2.1 Compression

Encoding data into a format that uses fewer bits to store the same data is called com-

pression. The original data can be retrieved by decoding the encoded data. Compression

is useful for two reasons. The first reason is that less space is needed to store the same

amount of data. Saving space can allow users of compression to store more data, or to

use smaller storage devices to store that data. The second reason is that transporting

encoded data is faster, as fewer bits need to be transferred to transfer the same amount

of information.

Commonly heavy-weight compression (HWC) schemes are used to compress data.

HWC can encode any kind of data, and are widely used in the industry. Examples

of HWC are: zstd[11], Deflate[13], LZ4[10], and Snappy[17]. These schemes commonly

rely on complex encodings such as Huffman coding[16] or LZ77[61]. Decoding these

complex encodings requires many instructions, that are hard to parallelize. Heavy-

weight compression schemes also operate on large blocks of data, requiring a relatively

large amount of memory during decompression[1]. This high memory usage causes the

decompression function to continuously spill data out of caches, introducing a memory
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throughput bottleneck. Both the complex decoding and the high memory usage slows

down the decoding of HWC significantly.

An alternative to HWC are light-weight compression (LWC) schemes. LWC operate

on columnar data and rely on simple encodings. These simple encodings are faster to

decompress, as decoding can be vectorized, requiring fewer and more parallel instruc-

tions, and little memory[62]. Using LWC can speed up database queries by leveraging

the high decompression speed. The read throughput of data in kernels can then be

increased by loading compressed data instead of normal data, and decompressing that

data at the last moment before processing it[59, 15]. Some light-weight encodings are

also directly interpretable in encoded form. This property enables databases to operate

on those encodings without decoding the data at all.

An example of a LWC is bit-packing, a corner stone encoding upon which many other

light-weight encodings expand. In binary representation, any integer in the range [0, 2b)

can be represented using b bits. However, on computers integers are represented as 8-bit,

16-bit, 32-bit, or 64-bit integers. If a set of integers is represented as 32-bit integers, but

the set only contains values in the range [0, 2b), with b < 32, there are 32− b bits that

are always zero. Bit-packing compresses data by reusing these bits to store the bits of

the next integer, instead of leaving those bits unused. A 32-bit integer can then contain

two 16 bit values, or 16 two bit values. Smart bit-packing arrangements can even store

bits of a single value across multiple integers, enabling for example three 32-bit integers

to store four 24 bit values.

The FOR (Frame Of Reference) encoding expands upon bit-packing by preprocessing

values before bitpacking those values[14]. Bitpacking can encode values that fit into a

range [0, 2b) with b bits. However, the smallest value within a range of numbers is not

necessarily zero, so the lower bound of this range could be improved. A series of values

might be encoded with fewer bits, by scanning a series of values and saving the smallest

scanned value as the offset. The range of values [offset , 2b) is then smaller if offset ̸= 0.

This smaller range can be mapped back to a range that starts with a 0 for bitpacking by

subtracting the offset from each value. Then you get a new range [0, 2
′
b) that is smaller

if ′b < b. The values can be decoded by unpacking the values, and adding the offset

back to each value to retrieve the original values.

2.2 FastLanes

FastLanes is a new next-generation big data format[2]. FastLanes is data-parallelized

by utilizing the novel 1024-bit interleaved and Unified Transposed Layout[3], enabling

fully parallel decoding even with scalar code on the CPU. Parallel encodings are faster

to decompress as there are no dependencies between instructions, and parallel encodings

can leverage SIMD instructions for high-throughput decoding of data. FastLanes signif-

icantly outperforms the state-of-the-art, achieving an 80× speedup on the M1 processor

8



compared to Parquet, an industry standard data format, while also achieving a 40%

better compression ratio.

FastLanes uses the concept of vectors to group values within columns, based on the

work of Zukowski et al.[7]. Vectors are groups of 1024 values that are compressed with

the same parameters. By grouping values together this way, there are many costs that

can be amortized across 1024 values instead of incurring them for decoding every value.

Vectorization of data decoding also exposes more parallel instructions to the compiler,

which can be executed faster in pipeline based processors. When using bitpacking as

a compression method, the range of all values of a vector of 1024 values decides with

how many bits each value in the vector will be packed using the 1024-bit interleaved

layout. The FFOR (FastLanes Frame Of Reference) encoding is based on the bitpacking

mechanism and contains an offset per vector of values. During decoding, the offset

addition is fused with the SIMD instructions for unpacking the values, to be able to

keep the data in the SIMD registers.

Exception patching is a technique to even further increase the possible compression

ratio, while retaining high throughput decoding performance[62]. If for example an

FFOR vector contains a single outlier, the range of values in that vector is significantly

increased, requiring all values to be packed using more bits. Instead, by using exception

patching, that outlier can be marked as an exception, and separately encoded. Then

the FFOR range can be calculated using the range of all non-outlier values. During

decoding, packed values that are actually exceptions can be replaced with the value of

the exception.

In the FastLanes file format, these different light-weight encodings such as FFOR and

exception patching can be combined and cascaded using the Expression Encoding feature

of FastLanes. FastLanes defines a set of encoding operators[2] and, by using Expression

Encoding, each column can be encoded by combining a series of these operators into an

encoding expression. By combining these LWC expressions, compression ratios equal to

HWC schemes such as zstd can be achieved[6].

FastLanes also has an encoding to encode floating-point data, called Adaptive Loss-

less floating-Point Compression (ALP)[5]. As the name implies, the encoding can loss-

lessly compress both single-precision as well as double-precision floating-point data. The

encoding expands upon PseudoDecimals[20]. PseudoDecimals observed that floating-

point data in real datasets are commonly storing data that each could also be repre-

sented by storing an integer in combination with an exponent e. An example of this

kind of data is monetary data, which has a limited, and fixed number of decimals. This

is important, as the binary representation of floating-point data is not suitable for LWC

such as FOR. The data can be compressed better by mapping floating-point data to

these integers and exponents, as these integers can then be compressed using run-length

encoding and FOR.

ALP improves upon PseudoDecimals in compression speed, decompression speed and
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compression ratio[5]. (De-)Compression speed is improved by vectorizing the encoding

and decoding, using primitives from the FastLanes compression library. Compression

ratio is improved by defining an exponent per vector of values, instead of per individual

value. This amortizes the storage cost of the exponent across 1024 values instead of

a single value. Additionally, ALP uses an additional multiplication with a factor f to

cut off trailing zeros from the integer part of the representation. This is mostly useful

when the exponent is comparatively high, causing the resulting integer to contain many

trailing zeros.

However, approximately one percent of decimal values cannot be mapped to exact

double-precision values using a combination of an integer and exponent. These values

are separated from the other values, and handled with the exception patching mecha-

nism. To decode the data, first the bit-packed integers are decoded, and then mapped

back to floating-point data. The values that could not be mapped to integers are then

replaced with the original values. In cases where most of the floating-point values in a

column cannot be represented as a pair of integer and exponent, ALP uses an alternative

encoding called ALPrd. ALPrd refers to these values as real doubles, as they do not

originate from data that could be stored as decimals with fixed precision. ALPrd is not

implemented in this thesis.

2.3 Compression on GPUs

Compressing data can be promising for GPUs, as all data needs to be transferred via a

comparatively slow PCIe link between the GPU’s RAM and the CPU’s RAM. Compress-

ing data alleviates the problem of a slow PCIe link, because compressed data takes less

time to transfer than non-compressed data, as less data needs to be moved. Additionally,

more data can be fit into the GPU’s RAM by compressing the data.

Shanbahg et al. [56] pioneered the idea of leaving the data compressed in the GPU’s

RAM. This ensures that no memory needs to be allocated in the GPU for the decom-

pressed data, allowing one to store more data on the GPU. Shanbahg et al. use a

cascaded compression scheme, where the compressed data needs to be read multiple

times before the data is fully decompressed. To avoid reading data multiple times from

RAM and further increasing pressure on the RAM throughput bottleneck, they store

the compressed data in the GPU’s shared memory. They then decompress that data

during the execution of a query. They adopt the notion of a tile of data, which is similar

to the concept of a vector of data. A tile is a fixed size group of values that fits in the

GPU’s shared memory.

This approach of loading compressed data has an additional benefit besides being

able to store more data in the GPUs RAM. Loading compressed data from RAM into

registers is faster than loading non-compressed data, as fewer bytes need to be loaded

to transfer the same amount of data. However, the overhead of decompressing the
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tile-based encoding was too large to make use of this transfer benefit.

The bitpacking encoding from FastLanes was also implemented for GPUs[4]. The

data-parallel encodings that work well with SIMD instructions also fit the warp-based

execution model of GPUs very well. This initial implementation showed that the data-

parallel FastLanes encoding makes the decompression overhead much smaller. Because

the decompression overhead is smaller, the kernels can leverage the benefit of loading

compressed data, and the memory-throughput-bound kernels can actually be faster by

loading compressed data. The initial GPU API uses the vectorized execution model—the

most widely adopted execution model on the CPU. However, on GPUs this forces ker-

nels to materialize 32 values per thread per column. On GPUs the amount of high-

throughput, nearby memory (registers, shared memory, L1 cache) per thread is limited,

and materializing 32 values per thread negatively affects occupancy, as will be further

explained in Section 3.5.

2.4 nvCOMP

NVIDIA’s nvCOMP compression framework[42, 39, 46, 53, 23, 30] offers multiple com-

pression schemes to compress and decompress data on the CPU as well as the GPU. The

framework is widely used, with more than 608,509 downloads[40]. nvCOMP compression

encodings supports multiple data types: bytes, multiple integer types, strings, and half

precision floats[38]. nvCOMP contains no direct compression methods for single preci-

sion or double precision floats, instead this data can be compressed as a stream of bytes.

nvCOMP consists of several heavyweight compression schemes such as LZ4, Snappy,

ZSTD, and Deflate, as well as GPU-optimized formats like Bitcomp (proprietary and

closed-source) and GDeflate.

GDeflate is a GPU-friendly variant of Deflate that introduces interleaved Huffman

coding, where codes are permuted into 32 partitions, though its details are vaguely

explained[30]. This enables intra-threadblock parallelism, allowing GPU threads within

a block to decode different partitions simultaneously, similar to interleaved bit-packing

in FastLanes, where data is distributed across 32 lanes. For LZ4, nvCOMP enhances its

GPU-friendliness by breaking datasets into blocks and compressing/decompressing each

block using a thread block[46]. Within each thread block, only a single warp is used to

ensure efficient coordination among threads via warp-level primitives.

CUDA, NVIDIA’s programming language for GPUs, requires programmers to man-

ually control when data, and which data, is copied to and from the GPU. There is no

spilling mechanism that automatically spills memory to the CPU’s RAM if the GPU’s

RAM is fully used. This lack of spilling poses a problem for heavy-weight compression

schemes with arbitrary block sizes, if the format does not contain metadata on the de-

compressed size for each block. Because otherwise during decompression the program

might segfault if there is no more memory to write the contents of the decompressed
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block to. nvCOMP extends every compression method that they support with an ad-

ditional header that contains decompressed block sizes. nvCOMP can also decompress

data that does not contain this NVIDIA specific header, but then it will either allocate

the maximum needed memory to decompress a block if that size is known, or nvCOMP

will do an expensive preliminary pass first to calculate how much memory the decom-

pressed data will need[37].
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Chapter 3

NVIDIA Graphics Processing

Units

This chapter explains what graphics processing units (GPUs) are, how they execute

programs and how they differ from central processing units (CPUs). First the general

execution model of GPUs is discussed, which introduces most related terminology re-

garding GPUs. After that the memory hierarchy of GPUs is discussed. Then warps,

the smallest computational unit of GPUs, are discussed. Then there is a section on

streaming multiprocessors and a section on occupancy. The chapter concludes with

two microbenchmarks. The first microbenchmark highlights how the multi-pipeline ar-

chitecture of GPUs influence execution time. The second microbenchmark shows that

improving instruction-level-parallelism (ILP) increases the throughput of a memory la-

tency bound kernel, using a variant of a pointer chasing benchmark.

This thesis only benchmarks, and refers to, NVIDIA GPUs, not GPUs from other

manufacturers. This choice was made as most literature on GPUs uses NVIDIA GPUs,

and NVIDIA GPUs dominate in the industry as well.

Generally, the exact hardware of NVIDIA GPUs is not officially documented. The

official documentation only consists of white papers and sales information, both of which

often lack detail and complete benchmarks. Instead there are a number of papers which

perform microbenchmarks to dissect a specific architecture of NVIDIA GPUs, such as

the Volta[19], Turing[18] and Hopper[22] architectures.

3.1 Execution model

GPUs excel in executing highly parallel programs, where the program needs to repeat-

edly execute the same computation on a large set of data. Developers can program

GPUs by writing CUDA, which is essentially C++ with extra keywords. C++ functions

can be configured to run on the GPU by simply writing the __global__ keyword in

front of the function signature. This indicates that this function will be called from the
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host (CPU) and run on the device (GPU). These functions are written as if a single

thread is independently executing the code.

Threads are grouped into thread blocks, which consist of up to 1024 threads. Thread

blocks are in turn grouped into grids. When calling a __global__ function, one needs

to specify the grid and thread block configuration that will execute that function. For

example, when adding two vectors, vector A and vector B, that each contain 102400

elements, one could launch a grid of 100 thread blocks, each thread block containing

1024 threads. In that function thread i would add A[i] and B[i] together and store the

result at index i in the output vector C. Listing 1 shows a minimal example of CUDA

code that executes this vector addition.

1 // GPU Function

2 __global__

3 void sum_vectors(const int *A, const int *B,

4 int* C, const size_t size) {

5 // Calculate index of thread by reading special CUDA variables

6 int thread_id = blockDim.x * blockIdx.x + threadIdx.x;

7

8 if (thread_id < size) {

9 C[thread_id] = A[thread_id] + B[thread_id];

10 }

11 }

12

13 // CPU Function that uses the GPU to execute the sum.

14 // The d_ prefix hint that these ptrs point to device memory

15 void sum_vectors(const int *d_A, const int *d_B,

16 int* d_C, const size_t size) {

17 const size_t block_size = 1024;

18 const size_t grid_size = size / block_size + 1;

19

20 // The <<<int, int>>> is used to configure

21 // the thread grid and thread block

22 sum_vectors<<<grid_size, block_size>>>(d_A, d_B, d_C, size);

23 }

Listing 1: This code is a minimal example of how programmers can program a vector
addition kernel in CUDA.

However, threads are an abstraction over how GPUs actually execute programs.

The GPU differs from a CPU in that it does not contain a unique processing instruction

pipeline for each individual thread. Instead GPUs contain streaming multiprocessors

(SMs), which execute multiple thread blocks concurrently. Each SM consists of warps.

An overview of the GPU internals is given in Figure 3.1. The SM distributes the threads

of a thread block among these warps, where each warp is assigned 32 threads. All of the

threads within a warp step through the same instruction for the program that they are
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executing. NVIDIA calls this the single instruction, multiple threads (SIMT) model[50].

The warp itself does not actually execute any instructions, the warp only issues

instructions[34]. When a warp issues an instruction, the instruction is passed to a

separate instruction pipeline which will execute that instruction. There are multiple

heterogeneous instruction pipelines in the SM, where each type of pipeline executes

only a specific set of instructions. The warps within a SM are divided into groups,

processing blocks, which share a set of these instruction pipelines[44]. A diagram of a

processing block is shown in Figure 3.2.

Each processing block has a warp scheduler, which at every cycle ’picks’ a warp

that may issue an instruction to the instruction pipelines within that processing block.

Warps might not be able to issue an instruction if they encounter a data hazard or a

control hazard, then they need to wait for a previous instruction to finish. This can

effectively hide the latency of the instruction that the warp is waiting on, because the

warp scheduler can then choose to execute the instructions of other warps[35].

3.2 Memory

The main memory hierarchy of a GPU consists of an L1 cache, an L2 cache and the

device’s RAM. Each SM has it’s own L1 cache, The L2 cache is shared among all SMs.

Global and local memory are logical subdivision of main memory that use the L1 cache

conventionally. Additionally, a GPU has three other variants of memory that have a

different version of the first level cache: constant memory, texture memory and shared

memory. On some GPUs these memories are all still physically located on the L1 cache,

and then the L1 cache is referred to as the unified cache.

Global memory is the term for regular memory, and is the most common form of

memory. The memory resides in the GPU’s RAM until it is read, then it is placed in

the L1 cache, until it gets evicted into the L2 cache. Global memory accesses that are

not cached have high latency and low throughput. For optimal read performance, global

memory accesses need to be coalesced. Otherwise a single read transaction will result

in loading multiple cache lines to fetch all necessary data[32].

Local memory functions the same as global memory, but the compiler chooses what

memory is stored in local memory. The compiler will use local memory to store very

large arrays, to store arrays that are dynamically accessed, to pass arguments to de-

vice functions that were not inlined, and to spill registers[29]. Because local memory

functions the same as global memory, it has higher latency and lower throughput than

reading from registers. Therefore it is necessary to be conscious about if a kernel uses

local memory, and whether it is possible to avoid using local memory.

Local memory is used when calling functions that were not inlined. The compiler

needs to store the state of the registers before entering the non-inlined function into

local memory. Then when the function finishes the register state needs to be restored.
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This is relatively slow and increase the load on the already scarce L1 cache memory read

throughput. To avoid this problem, the NVIDIA compiler tries to aggressively inline

functions.

Constant memory and texture memory are both read-only for code running on the

GPU. The constant cache is relatively small, and is optimal when all threads within a

warp need to access the same value[51]. If the value is not cached in the constant cache,

it is loaded from the GPUs RAM. The texture cache is optimized for repeated 2D array

accesses with spatial locality[29].

Shared memory is addressed by memory banks, which enables warps to do unco-

alesced access without a performance penalty, conditional on that there are no bank

conflicts. Bank conflicts occur when two threads read different memory addresses that

are located in the same memory bank. Shared memory allocated to a block can be

read from, and written to, at runtime by all threads within that block. This means it

is possible to use shared memory for inter-thread communication [54]. Loading data

from global memory to shared memory requires the memory to first be loaded into the

registers. However there exists a direct copy PTX instruction[47] on compute capability

8.0 and newer, which can be called with inline PTX[28].

Registers represent the fastest form of memory, and the number of registers per

thread is dynamic, with a maximum of 255 registers per thread[51]. Registers have the

lowest latency and highest throughput of all memory types. Registers are actually not

located in the warp themselves, but in the register bank of the SM. However, registers

are cached within the warp itself. The warp can cache four registers for each thread.

This register caching can help prevent register bank conflicts, although studying these

conflicts requires manual inspection and adjustment of the SASS assembly, so it is in

most cases not a feasible optimization[19].

The GPUs assembly not only contains normal load instructions, but also vectorized

load instructions. Instead of loading a single value per thread per instruction, the

vectorized load instructions fetches four consecutive values per thread per instruction.

The vectorized load instructions therefore can fetch more memory per instruction. This

enables the SM to use fewer load instructions to fully saturate the memory bandwidth.

The vectorized load instructions are particularly useful on architectures with relatively

low memory instruction throughput[26].

In CUDA the developer manually controls which memory is copied to and from the

GPU over the PCIe link, there is no mechanism that can spill memory from the GPU’s

RAM to the CPU’s RAM or to disk.

3.3 Warps

CUDA enables developers to program the GPU as if they were programming a single,

independent thread. However, on the hardware side the smallest unit of computation
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is not the thread, but the warp. Programming those warps as if they only execute a

single thread can leave a lot of performance on the table. It is better to think of GPU

instructions as vector instructions[58].

Warp divergence occurs when not all threads within the same warp take the same

branch within the program[24]. In that case, the warp will execute both branches

sequentially. The threads that do not enter the branch are disabled. At run-time the

program can query which threads within the warp are disabled by querying the value of

the active mask [52].

When issueing memory accesses to global memory, each thread can access an indi-

vidual value. However, if threads access values that are aligned on the same 128-byte

cache line, the warp will coalesce these memory accesses. This means that instead of

fetching the same 128-byte cache line multiple times, it will only fetch this line once,

and give each thread it’s own requested part of the line. Coalescing is only applied to

memory accesses of threads in the same warp, so memory accesses from different warps

cannot be coalesced[32].

This coalescing is also the reason why sequential memory access is faster on GPUs

than random memory accesses. Sequential memory accesses result in fully coalesced

memory accesses, while random memory accesses will need to fetch a different 128-byte

cache line from RAM for each thread in the warp, resulting in a 32x decrease in effective

memory throughput. As each thread only needs part of the 128-byte cache line, but

pays the cost in throughput for fetching the entire line.

3.4 Compute capability

The compute capability of a GPU indicates what the version is of the SMs in the GPU.

Each compute capability can differ from previous ones, changing how much compute

throughput, how large the cache sizes are, or changing other properties of a SM. Multiple

GPUs can share the same compute capability. These GPUs then differ in other aspects,

such as the number of SMs per GPU, the amount of RAM, the type of memory link, etc.

The properties of each compute capability can be found in NVIDIA’s documentation[25],

as well as the compute capability of every NVIDIA GPU[55].

In Table 3.1 the memory and occupancy properties of a selection of compute capabil-

ities can be seen. The selected compute capabilities are 6.1, 7.0, 8.9 and 9.0. Compute

capability 6.1 is shown as it is the compute capability of the GPU on which all devel-

opment for this thesis was done. Compute capability 7.0 is the compute capability of

the V100 GPU. The 8.9 compute capability is a compute capability optimized for visual

computing, used predominantly in consumer cards, and the development GPU of CWI

has this compute capability. Compute capability 9.0 is the most recent datacenter GPU

compute capability.

Several of the properties of the compute capabilities are identical. The total number
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Compute capability 6.1 (GTX 1060) 7.0 (V100) 8.9 (RTX 4070) 9.0 (H100)

Max threads per block 1024 1024 1024 1024
Resident threads 2048 2048 1536 2048
Resident warps 64 64 48 64
Resident blocks 32 32 24 32
32-bit registers 65536 65536 65536 65536
Max registers per thread 255 255 255 255
L1 Cache (kb) 48 128 128 256
Shared memory (kb) 96 96 100 228

Table 3.1: The resources available per SM for four different compute capabilities. Note
that the total number of registers per SM stays constant, while the L1 cache and shared
memory cache increases. The number of threads per SM is also the same for each SM,
except the RTX 4070, which is a consumer GPU, optimized for visual compute.

Compute capability 6.1 (GTX 1060) 7.0 (V100) 8.9 (RTX 4070) 9.0 (H100)

Registers 32 32 42.7 32
L1 Cache (bytes) 24 64 85.3 128
L1 Cache (4 byte values) 6 16 21.3 32
Shared memory (bytes) 48 48 66.7 114
Shared memory (4 byte values) 12 12 16.7 28.5

Table 3.2: On-chip memory resources per thread at 100% occupancy. The number of
registers per thread at 100% occupancy is equal for all SMs, except the RTX 4070, which
was optimized for visual compute. Each thread has access to very little L1 cache space
at 100% occupancy, only able to store 32 integers or 16 long integers on average with
the latest SM.

of registers is the same, as well as the maximum number of registers that can be assigned

to a thread, and the maximum number of threads that can be assigned to a single block.

All of the compute capabilities also have a maximum number of resident threads,

warps and blocks. This means that there cannot be more threads, warps or blocks active

than that maximum. This has important implications for the block sizes of kernels.

Because all compute capabilities have twice the number of resident warps the number of

resident blocks, a thread block should always consist of at least two warps. Otherwise

the bottleneck is the maximum number of active blocks instead of active warps.

The compute capabilities that specialize in visual computing differ by having only

1536 maximum threads per SM, and also a reduced number of resident warps and blocks.

Because other properties such as the total number of registers does not decrease for these

cards, there are more registers available per thread.

Table 3.2 shows the available on-chip memory per thread. In comparison to CPUs the

number of registers and the L1 cache of SMs is relatively large, but when sharing those

resources among all threads, the on-chip memory resources are very scarce. A single

thread can only have a resident set of up to 32 integers or single-precision floats in the
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L1 cache. This effect is aggravated when considering that L1 cache lines on NVIDIA

GPUs are 128 bytes wide[32], so when all threads access values that are on unique cache

lines, the number of values that can be cached is further reduced. So a GPU thread can

only have 32 values cached in the L1 cache under optimal circumstances, whereas CPU

threads commonly can store KBs of data in the L1 cache.

3.5 Occupancy

The occupancy of a kernel is the ratio of active warps to the maximum total number of

warps for a specific kernel[45]. High register usage, high shared memory usage, or low

threadcount per block can decrease the occupancy for a specific kernel.

High occupancy indicates that there are many warps active on the SM. Having many

warps active concurrently allows the GPU to hide latency better. While some warps

are waiting on instructions with a long latency, other warps can issue instructions to

make use of the SM’s resources. This can hide the latency of instructions, as the SMs

resources were still fully saturated while waiting for instructions with higher latency. So

high occupancy increases the number of active warps, and therefore increase the chance

that there are warps that can issue an instruction while other warps are stalled.

High register pressure means that the kernel uses many registers per thread. As the

total amount of registers per SM is fixed, the SM will not activate every warp, thus

decreasing the occupancy. By not activating every warp, the warps that are activated

can still be assigned enough registers[49].

The exact maximum occupancy due to register usage is best calculated by using

NVIDIA’s Occupancy Calculator[45], as there are multiple factors that influence the

occupancy for a certain number of used registers per thread. Registers cannot be allo-

cated to a block in increments of one, neither are register allocated to a single thread,

but only to a warp as a whole. Saving a single register can have a large effect on maxi-

mum occupancy, as it might allow the block to save a new allocation of a large number

of registers. But saving a single register can also have no impact, if there is no lower

threshold of allocated registers in reach.

High shared memory usage is also problematic for occupancy, as there also needs to

be enough shared memory for all active blocks. Allocating all of the available shared

memory to a single block will ensure that no other block of that kernel can run concur-

rently on the same SM. This limitation can however be leveraged in microbenchmarks

to test the performance of a single thread in isolation[58], by allocating the maximum

shared memory to a single block consisting of a single thread.

As mentioned in Section 3.4, allocating less than two warps per block can also

decrease occupancy, as the number of maximum resident warps is at least twice as large

than the maximum number of resident blocks. Any block using less than two warps will

therefore suffer a decrease in occupancy.
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Registers and shared memory are allocated to a block, until the last thread of that

block finishes[27]. This is important, as any thread that is an outlier in regard to

execution time will ensure that the resources of the entire block cannot be released until

that thread finishes. So it is also possible that the occupancy is decreased by having

a single long running thread, as the next block cannot be scheduled until that thread

finishes.

3.6 Assembly

CUDA code is compiled by nvcc[41] to PTX[47], which is in turn compiled to SASS,

which has a listed, but undocumented instruction set[43]. PTX is an intermediary lan-

guage which ensures that every binary can run on every NVIDIA GPU. Each generation

of SM can have different assembly instructions. SASS is the actual assembly language

that is compiled to the machine code which runs on the GPU[48].

The most important note about the SASS instruction set is that, unlike the PTX

instruction set[47], there is no actual division instruction. Instead, the PTX division

instruction is translated into approximately forty SASS instructions that actually exe-

cutes the division1. Other optimizations, such as inlining, are also not yet applied in

the PTX2 binary. This means that evaluating PTX is not particularly useful for any

performance insights, instead it is more beneficial to study the SASS that is generated

from that PTX.

The actual machine code generated from SASS differs in some aspects from archi-

tecture to architecture. Details about the machine code were uncovered by academic

papers[18, 60]. Since the Kepler architecture, the machine code consists of two parts: the

instruction itself, and the control logic. The control logic is read by the warp scheduler,

and controls how warps are picked to issue instructions. There are a multitude of open

source assemblers created by third parties in order to be able to manipulate the machine

code by manually writing SASS code3,4,5,6,7, as the NVIDIA provided toolchain does

not offer an option to do this. Although these open source assemblers are unmaintained

or archived, and only target a specific architecture, a developer can still study the source

code to learn more about generating NVIDIA GPU machine code. There is also a utility

available that can retrieve hardcoded instruction latencies from the NVIDIA assembler8.

GPUs contain no branch predictor, and a warp issuing a branch instruction will

simply stall[31]. There is currently also no out-of-order execution on GPUs[8]. Branching

1https://godbolt.org/z/q6GaWf6Ef
2https://godbolt.org/z/1WW7Whazx
3https://github.com/cloudcores/CuAssembler
4https://github.com/NervanaSystems/maxas/
5https://github.com/hyqneuron/asfermi
6https://github.com/daadaada/turingas
7https://github.com/laanwj/decuda
8https://github.com/0xD0GF00D/DocumentSASS
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in GPU code therefore has different performance characteristics than branching in CPU

code. Stalling is not necessarily negative, as another warp can then issue instructions if

there is a warp waiting.

3.7 Microbenchmark: Heterogeneous Instruction Pipelines

As explained earlier, warps only issue instructions. These instruction are then executed

on a heterogeneous set of instruction pipelines. Each instruction pipeline only exe-

cutes a specific set of instructions. There are different instruction pipelines for memory

instructions, single precision arithmetic, double precision arithmetic, control flow and

more. Each compute capability can have different types of instruction pipelines, and

can have different ratios of throughput per type[25]. The execution time of a kernel can

be improved by changing it’s instruction mix. If a specific type of instruction pipeline

is currently the bottleneck, part of the kernel could be changed to use less instructions

of that bottleneck type, in exchange for more instructions that are executed on a less

used type of instruction pipeline.

To prove that changing the type of instructions works, we benchmark the execution

times of two different functions. One function exclusively executes arithmetic instruc-

tions, and the other function uses mainly memory instructions in exchange for fewer

arithmetic instructions. What these functions actually do is irrelevant, as long as they

issue different kinds of instructions, and most importantly take approximately the same

amount of time to execute. In a real world scenario one could equate this to two different

implementations of the same function, where microbenchmarks show neither implemen-

tation to actually perform better than the other.

1 template<typename T>

2 __device__ T arithmetic(T value, const T zero) {

3 #pragma unroll

4 for (int i{0}; i < (N_ARITHMETIC_INSTRUCTIONS / 2); ++i) {

5 // Each of these instructions sets value to zero

6 value *= zero;

7 value &= zero;

8 }

9

10 return value;

11 }

Listing 2: Example function that exclusively issues arithmetic instructions. For loop
is unrolled to remove branch and jump instructions. The variable zero contains the
value zero at runtime, but is set to zero only at runtime to prevent the compiler from
optimizing away the instructions in the for loop, as the function would always return
zero.
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The code of Listing 2 shows a bogus calculation that is repeated multiple times. One

of the function parameters is called zero, this variable contains zero at runtime. The zero

is not hardcoded, as then the compiler would be able to optimize away the instructions

within the for loop. The for loop is also completely unrolled, to avoid any bound checking

and branching instructions. The N_ARITHMETIC_INSTRUCTIONS constant is divided by

two as there are two instructions per iteration. There are two different instructions per

iteration, as the compiler can often optimize away a single repeated instruction. The

main point of this function is that it exclusively issues a large number of arithmetic

instructions.

1 template<typename T>

2 __device__ T memory(T value, const T zero, const T *ptr_to_zero) {

3 value *= zero; // Ensure value is set to zero at runtime

4

5 #pragma unroll

6 for (int i{0}; i < N_MEMORY_INSTRUCTIONS; ++i) {

7 // Effectively repeatedly adds zero to zero

8 value += ptr_to_zero[value];

9 }

10

11 return value;

12 }

Listing 3: Example function that exclusively issues memory load instructions. For loop
is unrolled to remove branch and jump instructions. The pointer to zero variable points
to a variable or array containing a single zero to ensure that the value that is returned is
always zero, which will cause repeated accesses to the same memory address. Therefore
the memory that is accessed in this function will most probably reside in the L1 cache,
as all threads repeatedly access the same value.

The code of Listing 3 also shows a bogus calculation that is repeated multiple times.

In this case the additional function parameter ptr_to_zero is a pointer to memory that

consists of a single zero. As value is set to zero at runtime, it will effectively repeatedly

load the same value, so the memory it loads resides in the L1 cache. The function is

therefore bound by the memory throughput of the L1 cache. The value is only set to

zero at runtime, as otherwise the compiler could optimize away the for loop. The main

point of this implementation is that it exclusively issues memory instructions, instead

of arithmetic instructions.

Both of these implementations were separately executed by 104,857,600 threads, and

the resulting execution times can be seen in Table 3.3. The N_ARITHMETIC_INSTRUCTIONS

is set to 900, and N_MEMORY_INSTRUCTIONS is set to 60. These values were chosen to

ensure that the implementations take approximately the same amount of time to exe-

cute. Therefore, the execution times in the table are almost the same. This experiment
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establishes the execution times of both the functions in isolation.

Kernel Execution time (ms)

Arithmetic 109.46
Memory 106.94

Table 3.3: This table shows the execution times of the arithmetic function and memory
function in isolation. The number of arithmetic instructions and memory instructions
executed by each type of kernel was adjusted to approximately equalize the total exe-
cution times of the kernels.

To actually show how we can leverage the fact that warps share a set of heterogeneous

instruction pipelines, we construct another kernel, which calls two functions, instead of

only one function. There are four variants of this kernel, one where the arithmetic

implementation is called twice, one where the memory implementation is called twice,

and two variants where the first call uses the arithmetic implementation, and the second

call the memory implementation, or vice versa.

Kernel Execution time (ms)

Arithmetic, Arithmetic 185.10
Arithmetic, Memory 106.06
Memory, Arithmetic 112.98
Memory, Memory 210.37

Table 3.4: This table shows the execution times of all variants for a kernel that performs
two function calls. Alternating the type of functions is faster than using the same
function twice.

In Table 3.4 the results can be seen for all variants of the kernel that performs two

function calls. The results table show that, as expected, calling the same function twice

will approximately take twice as long as the execution time of that implementation

in isolation. However, the execution times for the kernel where the first and second

functions execute different types of instructions are faster than twice the execution

speed of either implementation in isolation.

This speedup is caused by the fact that the kernel can use the combined through-

put of two different instruction type pipelines, instead of only issuing instructions for

one instruction pipeline. The fact that warps can be in different stages of the kernel,

executing a different type and set of instructions, causes them to not have to wait for

access on the same instruction pipeline type. In the kernels where the invocations do not

alternate between implementations, both warps will be waiting on the same overloaded

arithmetic, or memory instruction pipelines, instead of spreading the load on multiple

instruction pipeline types.
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3.8 Microbenchmark: Instruction-Level Parallelism

On CPUs, a naive compilation of a program might produce an instruction stream that

contains many data or control dependencies between subsequent instructions. Compilers

aggressively reorder instructions to exploit as much instruction-level parallelism (ILP) as

possible. By executing independent instructions in between interdependent instructions,

the processor is less likely to need to stall to wait for a dependency on a previous

instruction to resolve[21].

GPUs can use occupancy, and switch warps, to hide latency when other warps stall.

However this might not always be enough, or result in the most optimal kernels. In-

creasing ILP can also improve performance of kernels on GPUs. By avoiding stalling

altogether, the throughput of individual warps can be increased[57]. The NVIDIA com-

piler is aware of this concept, and will aggressively reorder instructions to increase the

parallelism between long latency instructions as much as possible. Instead of only issuing

one read to global memory, and wait for the result, the compiler will put all indepen-

dent memory instructions next to each other. Instead of needing to stall to wait for each

latency, the latencies are overlapped and the warp will receive the results of the other

reads roughly by the time the first read is resolved. Although the compiler will reorder

instructions to leverage ILP as much as possible, kernels can sometimes be rewritten to

expose more ILP for the compiler to exploit.

To show the effect of increasing ILP , and to show that sometimes even 100% occu-

pancy is not enough to hide the latency of instructions, a variant of a pointer chasing

benchmark is benchmarked. Pointer chasing benchmarks are often used to measure the

latency of memory requests, but are also ideal to show the effect of ILP, because pointer

chasing benchmarks almost exclusively consist of interdependent instructions with high

latency.

A pointer chasing benchmark repeatedly accesses a large array that consists of a

random permutation of the arrays indices. The index of the next array element to fetch

is the value of the last array element that was fetched. This ensures that the compiler

cannot reorder instructions to overlap latencies, as the address of the next memory access

depends on the previous memory access. The latency of a read instruction can then be

calculated by dividing the total execution time by the number of pointers chased.

The kernel that will show the importance of ILP on GPUs will let 10,240,000 threads

chase 100 pointers each through an array of 10,000,000 elements. This array is too large

to fit into the L1 cache or L2 cache of the GPU, and the random walk through the array

ensures that most memory reads will need to read their data from RAM. To simplify

the benchmark it is ensured that warps will always fetch a single cache line per read

instruction by only enabling a single thread per warp. This avoids becoming throughput

bound by issuing uncoalesced memory accesses. The warp to array element mapping

is given in Figure 3.3. The pointer chasing benchmark will be executed with varying
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Figure 3.3: Example of how two warps chase pointers through a randomly permuted
array of indices. Warp n first fetches the value in the array at index n. Then it
retrieves the next value at array[value]. This step is repeated 100 times. To simplify
the benchmark measurements, only a single thread is active per warp.

amounts of occupancy. Occupancy is limited by allocating the maximum amount of

shared memory per thread block, ensuring that only one or two thread blocks per SM

are active. Then the desired occupancy can be configured by increasing or decreasing

the number of threads per thread block.

The experiment will be repeated with varying amounts of ILP. ILP is increased in

this case by letting a single thread concurrently chase multiple pointers. The number

of launched threads is then decreased proportionally, to ensure that the total amount of

pointers chased remains the same. Figure 3.4 depicts this new warp to element mapping,

and Listing 4 shows the core code for this benchmark. The compiler is able to reorder

the instructions to overlap memory read latencies if the ILP_FACTOR is higher than 1.

Figure 3.5 shows how effective exposing ILP to the compiler can be. In this kernel

that mainly consists of instructions with very high latency, improving ILP is a strict

improvement for each ILP factor. By chasing only a single pointer per thread, the

maximum throughput is not even reached at 100% occupancy. Maximum throughput

can only be obtained by chasing multiple pointers concurrently. For any level of occu-

pancy, increasing ILP gives a higher throughput. With an ILP factor of 8, maximum

throughput can already be obtained with an occupancy of just 40%.

In conclusion this microbenchmark shows that ILP is not only relevant on CPUs,

but also on GPUs. Exposing more ILP to the compiler can be necessary at even 100%

occupancy to reach optimal performance in latency bound kernels. Increasing ILP does

not improve kernels that are throughput bound, as overlapping latencies is not needed

when instruction pipelines are already saturated. Latency bound kernels can also be

rewritten to focus less on reaching 100% occupancy, because with more ILP less occu-

pancy is needed to offset long latency. Being able to focus less on occupancy opens up

more design space for other optimizations.

27



382 5 561 39 561 4 ...Array
0 1 2 3 4 5

Warp 0

Warp 1

Figure 3.4: Example of how two warps chase multiple pointers through a randomly per-
muted array. In this case each warp chases two pointers through the array. Warp n now
starts at index n∗m when each warp chasesm pointers. When chasing multiple pointers,
each warp can concurrently issue the read instructions for each pointer, without waiting
for the previous read to finish. The total amount of activated warps is proportionally
decreased, to correct for the fact that each warp chases multiple pointers. The total
amount of pointers chased remains constant.

1 template <unsigned CHASE_N_PTRS, unsigned ILP_FACTOR>

2 __device__ int chase_ptr(const int *array, int* chasers) {

3 #pragma unroll

4 for (int i{0}; i < CHASE_N_PTRS; ++i) {

5 #pragma unroll

6 for (int v{0}; v < ILP_FACTOR; ++v) {

7 chasers[v] = array[chasers[v]];

8 }

9 }

10 }

Listing 4: Function that chases multiple pointers concurrently through an array. For
loops are unrolled to avoid branch and jump instructions, as well as to allow the compiler
to put all the memory load instructions next to each other in the generated assembly.
The ILP FACTOR variable indicates how many pointers are concurrently chased.
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Figure 3.5: Increasing the ILP factor in benchmark increases throughput at any level of
occupancy. Maximum memory read throughput can be reached with occupancy levels
lower than 100%. Maximum memory read throughput is not reached, even at 100%
occupancy, when each warp only chases 1 pointer concurrently.
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Chapter 4

GPU Decoding Algorithms

This chapter explains how the FastLanes and ALP algorithms, that were designed to

leverage SIMD instructions on CPUs, are redesigned to perform well on GPUs. The

chapter starts off with studying what the initial implementation of FastLanes on GPUs

did, and then explains both the advantages as well as the disadvantages of that imple-

mentation. To solve the disadvantages, a new implementation is proposed that decodes

values one at a time, instead of entire vectors.

This chapter studies how ALP’s CPU exception patching approach can be optimized

by decoding one value at a time. After that a section follows which explains how the

exception layout can be improved to allow for more data-parallelism during the patch-

ing of exceptions. The chapter concludes with an explanation of a minor performance

improvement on the decoding algorithm of the data-parallel exception layout.

4.1 FastLanes Decoding

Regular FastLanes decodes entire vectors at a time, and all of the necessary decoding

steps are based on the bitwidth that was used to pack, encode, the vector with. The

implementation uses switch statements to the correct hardcoded block of instructions

for a specific bitwidth. There is a hardcoded block for each possible bitwidth including

0. Algorithm 1 shows the pseudocode for this decoding approach. The initial FastLanes

GPU implementation is copies the CPU implementation, except that each thread only

decodes a single lane within a vector.

The hardcoded instruction blocks contain no redundant instructions, and the or-

der of instructions can be fully optimized by the compiler. As most of the hardcoded

instructions are independent of each other, the compiler can exploit instruction-level

parallelism by grouping independent instructions together. Especially important is that

all the load instructions can be grouped together, ensuring that the load latencies are

overlapped and thus much cheaper. The hardcoded instruction blocks can be reached

efficiently, as there is only a single branch, and the branching cost can be amortized
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Algorithm 1 FastLanes lane decoding

1: PACKED VECTOR POINTER ← load(PACKED VECTOR POINTER + LANE)
2: DECODED INTEGERS[32]

3: switch BIT WIDTH do
4: case 1
5: PACKED INTEGER ← load(PACKED VECTOR PTR + 0)

6: . . . ▷ Hardcoded instructions to unpack into DECODED INTEGERS

7: break
8: case 2
9: FIRST PACKED INTEGER ← load(PACKED VECTOR PTR + 0)

10: SECOND PACKED INTEGER ← load(PACKED VECTOR PTR + 32)

11: . . . ▷ Hardcoded instructions to unpack into DECODED INTEGERS

12: break
13: case 3
14: FIRST PACKED INTEGER ← load(PACKED VECTOR PTR + 0)

15: SECOND PACKED INTEGER ← load(PACKED VECTOR PTR + 32)

16: THIRD PACKED INTEGER ← load(PACKED VECTOR PTR + 64)

17: . . . ▷ Hardcoded instructions to unpack into DECODED INTEGERS

18: break
19: . . . ▷ Continue for all other bitwidths
20: return DECODED INTEGERS

across all values in that vector.

However, decompressing one lane per thread is undesirable on GPUs as it requires

an output array of 32 or 64 values. This heavily increases register pressure, reducing

occupancy. In specialized kernels this might not be problematic, but as the goal is

to produce a decoding API for general use, the API should not put limitations on

occupancy.

Hence, the goal is to design an API that can decompress vectors one value at a time.

This would require no output array, but a single register to store the result in, thus

decreasing the register pressure of the API.

4.1.1 Single Value Decoding

The single value decoding API decodes the values in a lane in order. Every time the

decoding function is called, the next value in the lane is decoded. When decoding a

single value at a time, the switch statement based approach becomes more complex.

Instead of a single branch on the bitwidth, an additional branch is now needed to pick

the right instructions to decode that specific position in the lane. The cost of a single

branch is no longer amortized over 32 values, but instead it is needed to branch twice

every time a value is decompressed.

Splitting up the code blocks into code blocks that decode a single value also removes

the benefits of hardcoded instructions. No longer can the loads be trivially grouped

next to each other due to the control hazard of the new branches. This removes the

31



huge advantage of putting all loads together. You still retain the benefit of executing

only the bare necessary instructions within those code blocks, but database kernels that

benefit from compression on the GPU are limited by memory read throughput during

decoding, not by compute throughput.

The number of hardcoded instruction blocks also increases. 32-bit types requires 32-

bitwidths multiplied by 32 positions, is 1024 blocks. 64-bit types requires 64-bitwidths

multiplied by 64 positions, is 4096 cases. This would heavily increase the binary size,

especially considering that the compiler aggressively inlines functions as function calling

is expensive on GPUs. Additionally, instruction cache latency might become a problem,

because for each uniquely used bitwidth in the data, the common set of instructions

grows, potentially larger than the instruction cache.

Instead, the GPU implementation of FastLanes single value decoding uses a more

simple approach using branches, as shown in Algorithm 2. The implementation contin-

uously buffers an integer from the packed vector, that contains multiple encoded values.

Each time the decoding function is called, the next packed value is extracted from the

buffer. When all values from a buffer are loaded, the buffer is refreshed by loading the

next packed integer from the packed vector. If an encoded value spans multiple packed

integers, the remaining bits from the next buffer are fetched and combined with the bits

from the initial buffer.

The buffer can reside in cache, local memory, registers, or shared memory. The buffer

can also be expanded to multiple packed integers. In that case refreshing the buffer

executes two or more reads at a time, enabling the compiler to overlap the latencies of

the two reads. When the first buffer is fully decoded the decoder will decode the second

buffer before refreshing both buffers simultaneously.

Algorithm 2 FastLanes single value decoding

Phase – Initialization

1: BUFFER ← load next packed integer()

Phase – Decode one value

2: DECODED INTEGER ← UNPACK INTEGER FROM(BUFFER)

3: if BUFFER IS EXHAUSTED then
4: BUFFER ← load next packed integer()

5: if PACKED INTEGER SPANS TWO LINES then
6: UNPACKED REMAINING BITS ← (UNPACK INTEGER FROM(BUFFER) << OFFSET)
7: DECODED INTEGER ← DECODED INTEGER | UNPACKED REMAINING BITS

8: end if
9: end if

10: return DECODED INTEGER

The downside of the approach in Algorithm 2 in comparison to Algorithm 1 is that

there are more instructions needed, as the implementation cannot rely on specialized

hardcoded blocks of instructions. Additionally, this implementation contains branches.
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However, compute throughput is not the bottleneck on GPUs when decoding for most

value bit widths.

4.1.2 Branchless Single Value Decoding

Single value decoding can also be implemented branchlessly as shown in Algorithm 3.

To enable branchless encoding, the implementation always fetches two packed integers

from the packed vector. Then it selects which bits it needs from both packed integers

and combines these into a single decoded integer. The implementation always fetches

two packed integers to handle the case when a packed value spans two packed integers.

For any value that is fully encoded into a single packed integer, the number of selected

bits from the second packed integer is zero.

Algorithm 3 FastLanes branchless single value decoding

Phase – Initialization

BIT MASK ← SET FIRST N BITS(BIT WIDTH)

1: OFFSET[0] ← 0
2: OFFSET[1] ← 32

Phase – Decode one value

3: BUFFER[0] ← load(PACKED VECTOR PTR + 0)

4: BUFFER[1] ← load(PACKED VECTOR PTR + 32)

5: DECODED FIRST HALF ← BUFFER[0] >> OFFSET[0] & BIT MASK

6: DECODED SECOND HALF← (BUFFER[1] & (BIT MASK >> OFFSET[1])) << OFFSET[1]

7: DECODED INTEGER ← DECODED FIRST HALF | DECODED SECOND HALF

8: PACKED VECTOR PTR ← PACKED VECTOR PTR + (OFFSET[1] ≤ BIT WIDTH) · 32
9: OFFSET[0] ← (OFFSET[0] + BIT WIDTH) % 32

10: OFFSET[1] ← 32 - OFFSET[0]

11: return DECODED INTEGER

A downside of the branchless implementation is that it always performs two reads

instead of just one, and the reads cannot be buffered in registers or other forms of

memory. The implementation relies on the L1 cache for fast access to values that

were read previously. The performance of this implementation is also still fast, as the

bottleneck is reading data from RAM, not from the L1 cache. The benefits of the

branchless implementation are that the instructions do not contain control hazards,

giving the compiler more opportunities to interleave independent instructions. The

executed instructions is also constant for any bitwidth, this prevents warp divergence

when one warp would be decoding multiple vectors, as is the case when one warp decodes

two 64-bit integer vectors.
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4.2 ALP Decoding

Algorithm 4 shows the process of patching exceptions on the CPU. First all packed

data gets decoded into integers and mapped back to floating-point data. Then a loop

construct follows that reinserts the original values for all positions in the output array

that were originally exceptions[62]. This approach of patching after decoding avoids

needing to branch during the decoding of every single integer to check whether it was

an exception. The overhead of the loop is negligible, as exceptions are relatively rare,

and the code within the loop small.

Algorithm 4 ALP decoding

1: DECODED INTEGERS ← FFOR(BIT PACKED ARRAY)

2: DECODED DOUBLES ← ALP(DECODED INTEGERS)

3: EC ← 0
4: while EC < EXCEPTION COUNT do
5: DECODED DOUBLES[EXCEPTION POSITIONS[EC]] ← EXCEPTIONS[EC]

6: EC ← EC + 1
7: end while
8: return DECODED DOUBLES

However, this approach requires that the decoding phase produces an output array

with all decoded values. As the decoding process on the GPU only decodes single values

at a time, there is no output array of values to be patched. Also, even if that array did

exist, it could no longer be placed in registers, as patching consists of dynamic access

into that array, forcing the array into slower local memory.

4.2.1 Single Value Decoding

Single value decoding needs to check upon decoding each value whether that value is an

exception. Each thread needs to scan the whole exception positions array for exceptions

that occurred in the thread’s lane. Algorithm 5 shows how after decoding, this requires

the thread to enter a loop to iterate over all exception positions to find the first position

that is either equal or higher than the position of the value it is currently decoding. If

the thread scans a position that is higher, the current value is not an exception. The

check after the loop checks whether the position is equal to the position of the value it

is currently decoding, and if so replaces the decoded value with the original exception

value.

The scan loop is very costly, as scanning for whether a value is an exception can

take longer than the actual decoding of the value. Additionally in most cases the warp

diverges at this point, as each thread is scanning for different positions in the position

array. Most positions that a thread scans will not be relevant for that thread, as the

positions will not be part of that thread’s lane. The threads therefore need to do

redundant, duplicate work, and scan values that are only relevant for a single thread.
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Algorithm 5 ALP single value decoding

Phase – Initialization

1: EC ← 0

Phase – Decode one value

2: DECODED INTEGER ← FFOR(BIT PACKED ARRAY)

3: DECODED DOUBLE ← ALP(DECODED INTEGER)

4: while INDEX DECODED TUPLE > EXCEPTION POSITIONS[EC] do
5: EC ← EC + 1
6: end while
7: if INDEX DECODED TUPLE == EXCEPTION POSITIONS[EC] then
8: DECODED DOUBLE ← EXCEPTIONS[EC]

9: end if
10: return DECODED DOUBLES

4.2.2 Data-Parallel Exception Patching

The solution to the expensive scan loop would be for threads to be able to only read

their own exceptions, and not encounter any exceptions that are not within that thread’s

lane. This would enable the implementation to remove the expensive scanning loop, as

it is guaranteed that the next exception position is the next exception that the thread

needs to patch.

To enable the thread to only read exceptions that are relevant to that thread, the

exceptions array and exception positions array needs to be reordered. Instead of ordering

the arrays by position, the arrays are first ordered by the lane in which the exceptions

occur. First all exceptions in lane 0 are written, then all exceptions in lane 1 and so

on. Within each lane’s section, the exceptions are sequentially ordered by position, with

exceptions with lower positions first.

Now the threads only need to be able to directly find their lane’s section within the

overall exception array. The threads also need to know the number of exceptions within

their lane, to avoid reading positions that are not in their own lane.

One solution would be to create a new array of lane exception counts. The maximum

exception count within a lane in FastLanes is 64 (requiring 26 bits to store the count),

as that is the maximum amount of values in a single lane. Threads could then sum the

exception counts of all preceding lanes to find the correct offset of their lane’s exception

section starts. Obviously, executing this prefix sum would be an expensive step during

the decoding.

Alternatively, instead of storing the exception counts, the offsets within the exception

array could be stored in the array. The maximum offset is 1023−8 = 1015 (requiring 210

bits to store the offset), as that is the offset of the last lane when all values of all previous

lanes were exceptions, with the smallest granularity of lanes consisting of 8 values for

the uint 8t data-type. To make sure that the thread does not read any values outside

35



of the thread’s lane, it could calculate the number of exceptions in the lane by reading

the offset of the next lane, and subtracting that offset with the thread’s lane’s own offset

to obtain the exception count.

The offset approach is faster, as it requires no expensive loops, but just two read

instructions for each thread to read the offsets it needs. However, the last lane needs to

read the first offset of the next vector to calculate the exception count of the thread’s

lane. This is slightly awkward as the offset of the next vector can be located on a different

cache line, requiring the warp to fetch two cache lines for a single read instruction, which

is slightly more expensive than a perfectly coalesced read instruction.

There is a third approach that combines both previous approaches. As storing the

count requires six bits, and storing the offset requires ten bits, both can be packed into

a single 16 bit integer. This does not decrease the compression ratio, as storing the ten

bit offset would already require an array of 16 bit integers. Now the thread can get the

number of exceptions in lane, as well as the lane’s offset within the overall exception

array, with a single coalesced read instruction. Figure 4.1 shows a diagram of the new

exception layout.

Because the algorithm guarantees threads to only read exception positions from their

own lane, the scanning loop is no longer necessary. Algorithm 6 shows the improved

algorithm that uses the new data-parallel exception layout to decode ALP vectors. The

new exception layout is data-parallel because there are no dependencies in the exception

patching process of two lanes.

Algorithm 6 G-ALP single value decoding

Phase – Initialization

1: PACKED COUNT OFFSET ← load(PACKED COUNTS OFFSETS[LANE])

2: COUNT ← PACKED COUNT OFFSET >> 10
3: OFFSET ← PACKED COUNT OFFSET & 0x3FF
4: EXCEPTION POSITIONS PTR ← EXCEPTION POSITIONS PTR + OFFSET

5: EXCEPTIONS PTR ← EXCEPTIONS PTR + OFFSET

6: EC ← 0

Phase – Decode one value

7: DECODED INTEGER ← FFOR(BIT PACKED ARRAY)

8: DECODED DOUBLE ← ALP(DECODED INTEGER)

9: WITHIN BOUNDS ← EC < COUNT

10: IS EXCEPTION ← CURRENT POSITION == EXCEPTION POSITIONS PTR[EC]

11: if WITHIN BOUNDS and IS EXCEPTION then
12: DECODED DOUBLE ← EXCEPTIONS PTR[EC]

13: EC ← EC + 1
14: end if
15: return DECODED DOUBLE
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Figure 4.1: Example Layout for Data-Parallel Exception Patching. 1) A vector of 1024
values is represented with two components for each value: the top box represents the
position of the value within a vector, ranging from 0 to 1023, while the bottom box
is color-coded (red and green) to indicate whether the value is an exception, with red
denoting an exception. 2) The second section illustrates the positions of all exceptions
per lane. 3) The third section shows the data-parallel storage format for exceptions.
Exceptions are sorted by lane, starting with exceptions in lane 0, followed by exception
in lane 1, and so on. Yellow boxes represent metadata consisting of offsets (shown
by arrows) that indicate the starting position of exceptions for each lane, as well as the
number of exceptions denoted in the box. This structure allows each thread to efficiently
access its corresponding exception list. 4) The fourth section shows the original layout of
the same exception list, highlighting the structural differences between the two layouts.
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4.2.3 Buffering

There is one final optimization made to the ALP decoding process. In Algorithm 6 the

arrays with exceptions and exception positions reside in the L1 cache and are accessed

every time a value is decoded. The result of the read instruction is needed immediately

to verify whether the current position is an exception, and if so, the decoded value needs

to be replaced with the exception value. This ensures that the decoding process needs

to wait twice for the latency of two read instructions.

Instead, with Algorithm 7 the next exception position and value are buffered in reg-

isters. Verifying whether the currently unpacked value is an exception is fast, as the

position can be read from memory. If the current value is an exception, the next excep-

tion position and value are read into the buffer. However, these two read instructions

do not need to complete for the decoding to complete, so the compiler can leverage this

instruction-level parallelism and overlap the latencies and continue with other instruc-

tions. The results of the read instructions only need to arrive before the next value is

patched.

Algorithm 7 G-ALP single value decoding with buffering

Phase – Initialization

1: PACKED COUNT OFFSET ← load(PACKED COUNTS OFFSETS[LANE])

2: COUNT ← PACKED COUNT OFFSET >> 10
3: OFFSET ← PACKED COUNT OFFSET & 0x3FF
4: EXCEPTION POSITIONS PTR ← EXCEPTION POSITIONS PTR + OFFSET

5: EXCEPTIONS PTR ← EXCEPTIONS PTR + OFFSET

6: BUFFERED EXCEPTION POSITION ← EXCEPTION POSITIONS[0]

7: BUFFERED EXCEPTION ← EXCEPTIONS[0]

8: EC ← 1

Phase – Decode one value

9: DECODED INTEGER ← FFOR(BIT PACKED ARRAY)

10: DECODED DOUBLE ← ALP(DECODED INTEGER)

11: WITHIN BOUNDS ← EC < COUNT

12: IS EXCEPTION ← CURRENT POSITION == BUFFERED EXCEPTION POSITION

13: if WITHIN BOUNDS and IS EXCEPTION then
14: DECODED DOUBLE ← BUFFERED EXCEPTION

15: BUFFERED EXCEPTION POSITION ← EXCEPTION POSITIONS PTR[EC]

16: BUFFERED EXCEPTION ← EXCEPTIONS PTR[EC]

17: EC ← EC + 1
18: end if
19: return DECODED DOUBLE
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Chapter 5

Benchmarks

5.1 Preliminaries

Before proceeding to the benchmarks, first the benchmarking setup is explained, as well

as how the microbenchmark kernel was implemented, and why. Finally an example of

the decoder API is presented, to show how the API should be used.

5.1.1 Benchmarking Setup

Microbenchmarks are executed on 102400 vectors of synthetic data, to generate enough

thread blocks to saturate all SMs. Benchmarks are repeated ten times, and the resulting

executing times are averaged with an arithmetic mean. Execution times of microbench-

marks are measured with NVVP, a kernel profiler from NVIDIA. These measurements

have a resolution of nanoseconds. All benchmarks were executed on a GTX 1060 GPU,

full specifications can be found in Appendix A.

For the comparisons of ALP and G-ALP to nvCOMP compressors on real data,

NVIDIA’s event based measurement method[33] is used, as nvCOMP compressors com-

monly launch multiple kernels to decompress data. NVIDIA also benchmarks these

compressors themselves using events[36]. These event based measurements have a reso-

lution of one half of a microsecond. A warm-up run of a compressor is executed before

executing the actual run that is measured. This is done because the first launch of a

kernel can trigger a CUDA ’runtime kernel module loading event’ that is then included

in the event based measurements.

5.1.2 Filter Benchmark

Commonly on CPUs an aggregation would be executed on a compressed column, however

on a GPU this requires either significant thread coordination overhead to sum the sums

of each thread, or requires overhead from writing to an atomic variable by thousands or

millions of threads. This potentially masks the decoding performance by bottlenecking

the kernel with coordination overhead.
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1 __global__ void scan_column(

2 const ALPColumn<double> column,

3 const double value_to_scan_for,

4 bool *out) {

5 const lane_t lane_index = map_thread_to_lane(threadIdx.x);

6 const vector_t vector_index = map_warp_to_vector(threadIdx.x);

7

8 double buffer;

9 bool not_found_value = true;

10

11 Decoder decoder(column, vector_index, lane_index);

12

13 for (int32_t i = 0; i < column::VALUES_PER_LANE; ++i) {

14 decoder.decode_next_value_into(&buffer);

15

16 not_found_value &= buffer != value_to_scan_for;

17 }

18

19 if (!not_found_value) {

20 // Conditional write to memory;

21 // if no value is found, no write is executed

22 *out = true;

23 }

24 }

Listing 5: This code is a minimal example of how the API could be used in a device kernel
in CUDA to implement a scan kernel that isolates decoding throughput performance.
Note that the decoding function can decode values into any kind of memory, in this case
a single register. Calling the decoding function in this case automatically will calculate
the offsets to decode the next value, so repeatedly calling the decoding function will
unpack all values in the lane.

Instead the decoding performance is isolated by ensuring that there is as little addi-

tional memory read or memory write overhead as possible, and no thread coordination

overhead at all. This can be achieved by executing a scan that answers the query ’does

value x exist in column y?’ This is essentially a variant of a filter kernel, but does not

return row ids, but simply a boolean answer on whether any value was scanned that

was equal to value x. An example of how the scan kernel can be implemented is shown

in Listing 5. To further limit any memory write throughput during microbenchmarks,

it is ensured that only one value or none of the values in a column is equal to x, causing

at most one warp to execute a write to the GPUs RAM.

5.1.3 API

The decoding API takes a column, vector index and a lane index as inputs to decode
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a lane of a vector. A vector should be decoded by threads in a single warp, otherwise

the compressed vector will not be read using coalesced memory accesses, increasing the

memory read throughput bottleneck. This requirement is unavoidable, as reading a

normal array also requires that threads read subsequent values in order to achieve an

efficient and high memory read throughput. For uint32 t vectors, each thread in a warp

should decode a different lane in the same vector, as the number of threads is equal to

the number of lanes. When decoding a uint64 t vector, a single warp can decode two

vectors, as there are only 16 lanes. Half the threads decode one vector, and the other

half of the threads decode another vector.

In Listing 5 an example is shown how the API can be used. First an object is created

that acts as an iterator over the compressed values in a single lane from a vector. With

each call to decode next value into, the next value in the lane is decoded into a form

of memory. This memory can be a register, a local memory array, a shared memory

array or even a global memory array.

5.2 FFOR Microbenchmarks

In this section the FFOR decoding is benchmarked by decoding 102400 vectors of

uint32 t or uint64 t synthetic data. To benchmark how FFOR decoders perform

on vectors decoded with various value bit widths (the number of bits a value is packed

into), the measurements are repeated for each possible value bit width.

First the previous FFOR implementation from the FastLanesOnGPU paper is bench-

marked, to setup a baseline. This FFOR implementation is based on decoding an entire

lane with a single switch statement, as shown in Algorithm 1. The next benchmark tests

how well switch statement based decoding performs, when decoding a single value at a

time. After that alternative approaches to single value decoding as shown in Algorithm 2

are studied. The first alternative approach is a naive implementation of FFOR decod-

ing that calculates all offsets at runtime for each value it decodes, and this approach is

referred to as static decoding. After that a variant of the decoding API is benchmarked,

in which a warp does not decode a single vector at a time, but decodes four vectors

concurrently to attempt to expose more ILP for the compiler. The next alternative

approach is called streaming based decoding, where the offsets of the previous value are

reused to calculate the offsets of the next value, speeding up the decoding of consecutive

single values. This streaming approach can also store packed integers in a buffer that

were loaded but not fully decompressed yet. This buffer can be stored in a variety of

memory locations, each of which is benchmarked as well. Next branchless streaming

is benchmarked, in which the streaming approach is reimplemented to avoid branches,

as shown in Algorithm 3. This section finishes off with a multi-column benchmark,

in which various decoders are benchmarked when decoding up to ten columns concur-

rently in parallel. This benchmark investigates whether the alternative approaches to the
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Figure 5.1: This figure shows the decoding throughput of two decoders in the filter
benchmark where no decoded data is written back to RAM. The first decoder is the
FastLanesOnGPU decoder that uses switch based decoding to decode full lanes, in
comparison to a switch based decoder that decodes a single value at a time. The
FastLanesOnGPU decoder achieves higher throughput than the single value switch based
decoder for all bitwidths. The single value switch based decoder achieves very little
throughput for even the lowest bitwidths.

FastLanesOnGPU decoder are indeed better to decode multiple columns concurrently,

without suffering from reduced occupancy.

5.2.1 Switch Based Decoding

Switch-based decoding can decode entire lanes, as well as single values. The Fast-

LanesOnGPU decoder decodes entire lanes of 32 values, and was only implemented

for decoding uint32 t. This thesis also implemented switch-based decoding for single

value decoding, to investigate whether the switch-based approach performs well when

decoding a single value at a time.

The performance of the FastLanesOnGPU decoder and the switch-based single value

decoder can be compared in Figure 5.1. The figure shows that the single value decoding

performance is suboptimal. As described in Subsection 4.1.1, most of the benefits of

switch case based decoding cannot be leveraged when decoding a single value at a

time. The single value switch based decoder does not even reach the same throughput

as the FastLanesOnGPU decoder for the largest value bit widths, when memory read

throughput is the main bottleneck.
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Figure 5.2: This figure shows the decoding throughput performance of the static single
value (uint32 t) at a time decoder in comparison to the previous decoders. This new
decoder achieves twice as much decoding throughput as the single value switch based
decoder for lower bitwidths, and almost as much throughput as the FastLanesOnGPU
decoder for the higher bitwidths.

5.2.2 Static Decoding

As switch based decoding is not suitable for single value decoding, a naive FFOR decoder

is implemented. The pseudocode for this decoder can be found in Algorithm 2. The

decoder repeatedly calculates the required offsets at runtime for each value individually,

and branches are used to read the required compressed values from memory. This

naive decoder will be referred to as the static decoder as there is no benefit in reading

consecutive values from the same lane, as the required offsets are recalculated for each

value, and no packed integers are buffered.

Figure 5.2 shows that the static decoder outperforms the switch based single value

decoder for all bitwidths. However, the FastLanesOnGPU decoder achieves far higher

throughput for 16 and lower value bit widths. The same data is plotted in Figure 5.3, but

then with the execution time instead of the throughput on the y-axis. This figure shows

that for the higher value bit widths, the execution time of the FastLanesOnGPU decoder

and static decoder is similar, as both are bottlenecked by the read throughput. However,

the static decoder does not reach the same excution times as the FastLanesOnGPU

decoder for lower value bit widths, as the static decoder is bound by memory latency

for those value bit widths.

The static decoder can also decode uint64 t data. The decoding performance can
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Figure 5.3: This figure shows the same data as Figure 5.2, but now plots the execution
time on the y-axis instead of the decoding throughput. This figure shows that the
FastLanesOnGPU decoder is bound by read throughput for almost all bitwidths, as
execution time increases linearly, proportional to amount of extra data loaded. The
single value static decoder matches the execution time of the FastLanesOnGPU decoder
for higher bitwidths, but the execution times stop decreasing at around bitwidth 16,
indicating that the decoder is running into a non-memory throughput bottleneck instead.
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Figure 5.4: Decoding performance of the static decoder when decoding a uint64 t col-
umn. The decoding throughput is lower for all bitwidths in comparison to decoding a
uint32 t with the same decoder, this is due to lower long integer instructions through-
put.

be found in Figure 5.4. The performance pattern is very similar for most value bit

widths, but achieves lower throughput overall, even for value bit widths in common

with uint32 t. This can be due to a number of reasons, such as read instructions that

need to load two 128-byte cache lines to full fill reads due to the larger data type, even if

the reads are fully coalesced, or due to the reduced number of 64 bit integer instruction

pipelines.

5.2.3 Multi-Vector Decoding

For lower value bit widths, the long memory latency is the bottleneck, the warp is mostly

waiting for reads to complete. This latency can be mitigated by overlapping the latencies

of multiple instructions by exposing more ILP to the compiler. If four consecutive

vectors are packed with the same value bit width, the decompression instructions for

those vectors would be identical. In that case, instead of only decompressing a single

vector per warp, a warp could decompress four vectors concurrently. Whenever the warp

needs to read a new line from the first packed vector, it can also issue read instructions

for the other three vectors, as the read instructions are independent.

When disassembling a kernel that decodes a single value, the SASS will contain

isolated read instructions, followed by unpacking instructions that need to wait for the

read instruction to complete, as shown in Listing 6. However, when decompressing
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1 ...

2 LDG.E.CLI. R1 [R2]; // LDG -> Load from Global

3 // Decoding instructions for R1

4 ...

Listing 6: SASS Assembly for unpackers that decompress a single vector.

1 ...

2 LDG.E.CLI. R1 [R2]; // LDG -> Load from Global

3 LDG.E.CLI. R3 [R4];

4 LDG.E.CLI. R5 [R6];

5 LDG.E.CLI. R7 [R8];

6 // Decoding instructions for R1, R3, R5, R7

7 ...

Listing 7: SASS Assembly for unpackers that decompress multiple vectors concurrently.
The actual assembly is sometimes more convoluted, as the compiler might interleave
other instructions in between the loads. However the load instructions will be found
near eachother, with the bulk of the unpacking instructions found after the last load
instruction.

multiple vectors concurrently, the assembly of the disassembled kernel indeed shows

that the read instructions are grouped together by the compiler, as shown in Listing 7.

Figure 5.5 shows the performance of the static decoder for decompressing multiple

vectors concurrently. Multi-vector decompression has much higher decoding throughput,

achieving up to twice the throughput of the single vector static decoder for low value

bit widths, for both uint32 t and uint64 t. The graph also confirms that decoding

vectors with high value bit widths are bound by memory throughput, as the decoding

throughput is only increased for the lower value bit widths which are latency bound.

5.2.4 Streaming Decoding

With the static decoding approach, the offsets of the packed value in compressed vector

is recalculated completely when decoding each value. The static decoder also needs to

load the compressed integers from global memory each time it decodes a value, and relies

on the fact that previously accessed integers are still stored in the L1 cache. However,

a streaming approach could be faster. The streaming approach, reuses the offsets of

the previous value to calculate the next offset, and keeps previously loaded compressed

integers in buffers until they are fully decompressed. This streaming manner requires

the user of the decoder to sequentially decode values, but it is cheaper to decode every

subsequent value.

There are different techniques for buffering compressed data that is being decom-

pressed, until all values that are packed into those integers are decoded via the single
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Figure 5.5: This figure shows the previous two decoding throughput graphs that decode
a single vector at a time on the left. The right graphs show the decoding throughput
of the static decoder when decoding four vectors concurrently. Decoding four FFOR
vectors concurrently results in large increases in decoding throughput, approaching the
decoding throughput of the single vector FastLanesOnGPU decoder.
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value at a time API. You can even buffer multiple compressed integers before fully

decoding them. In this case, one would create a buffer and directly load the first n

compressed integers. When all compressed integers in the buffer are fully decoded, the

buffer is refreshed by loading the next n compressed integers into the buffer. The bene-

fit of this approach would be to overlap the read latencies of the instructions that load

compressed integers into the buffer. The downside is that these compressed integers are

loaded unconditionally, so if the buffer size is four, and the value bit width is three, four

compressed integers are loaded anyway.

As a baseline for the streaming decoder buffer strategies, it is possible to not use a

buffer and only rely on reusing the offsets of the previous value to improve upon the

static decoder, in this case one would rely on the automatic L1 cache behaviour to

quickly read recently accessed memory.

The buffers could be stored in local memory, shared memory or registers. The buffer

can be stored in local memory by creating a normal array and dynamically accessing

that array, based on the required buffer index. The buffer can also be stored in shared

memory by prepending the array declaration with the shared keyword. However,

the shared memory array is declared per thread block, so in the API the user would also

need to provive the blocksize at compile time.

The buffers can also be stored in registers, but this requires that the dynamic access

based on buffer index is eliminated. This can be done using a switch statement, as shown

in Listing 8. This avoids dynamic access into an array by using the switch statement

to jump to the correct load instruction. The switch statement can also be avoided by

leveraging the fact that the second buffer is never accessed before the first buffer is

decoded, and the third never before the second, etc. In this case we can rotate the

registers, so when the first buffer is fully decoded, the contents of the second buffer are

loaded into the first, and the contents of the third into the second, etc., this is shown in

Listing 9.
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1 __device__ __forceinline__ void load_next_buffer(

2 const uint32_t buffer_index,

3 UINT_T *out) {

4 switch (buffer_index) {

5 case 0:

6 *out = buffer[0];

7 break;

8 case 1:

9 *out = buffer[1];

10 break;

11 case 2:

12 *out = buffer[2];

13 break;

14 case 3:

15 *out = buffer[3];

16 break;

17 }

18 }

Listing 8: Retrieving the right buffer without dynamic access by relying on branching.

1 __device__ __forceinline__ void load_next_buffer(

2 const uint32_t buffer_index,

3 UINT_T *out) {

4 out* = buffer[0];

5

6 // Rotating the buffers

7 #pragma unroll

8 for (int b{1}; b < BUFFER_SIZE; ++b) {

9 buffer[b - 1] = buffer[b];

10 }

11 }

Listing 9: Retrieving the right buffer without dynamic access by rotating the registers.
The buffer index can be ignored, as the load pattern of the buffers is sequential.

The decoding throughput for all buffer variants is shown in Figure 5.6, for buffer sizes

one, two and four, and with single vector decompression and multivector decompression.

Local memory and shared memory have the lowest throughput in every configuration.

This is not surprising, as loading data into shared or local memory requires data to first

be loaded into registers from global memory, and then be moved into local or shared

memory, which is an extra step. The register based decoders are much faster, with the

register rotation based decoder narrowly beating the switch based decoder in all cases.

The streaming decoders reached the highest decoding throughput when using a buffer of
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Figure 5.6: Streaming buffer strategy throughput comparison for uint32 t columns. On
the left side the decoding throughput for single vector decoders are plotted, the right
side shows the decoding throughput of decoding four vectors concurrently. The decoders
in the top row graphs have a buffer size of one, the middle row decoders have a buffer
size of two, and the bottom row decoders have a buffer size of four. A buffer size of two
is best for all buffering strategies. The best buffer type is the register buffers, the other
buffer types have much lower decoding throughput.
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two compressed integers. For single vector decompression the top throughput is almost

100 vectors per microsecond, and multivector decompression decodes over 200 vectors

per microsecond.

The streaming decoders therefore also beat the static decoder, which had a top

decompression throughput of up to 80 vectors per microsecond for single vector decom-

pression, and reaching only 200 vectors per microsecond in multivector decompression

for value bit width 0.

In figure Figure 5.7 the decoding throughput for uint64 t decompression is shown.

The figure shows that the performance pattern is the same as when decoding uint32 t,

with the register rotating decoder again achieving the highest throughput and beating

the static decoder. However, as with the static decoder, the uint64 t decoding through-

put is lower than the uint32 t throughput, even when vectors are compressed with the

same value bit widths, showing that the reduced number of 64 bit integer instruction

pipelines causes the lower decoding throughput.

5.2.5 Branchless Decoding

The streaming decoder can also be implemented completely branchlessly, removing all

control hazards, which may allow the compiler to generate more efficient assembly by

reordering instructions, and warps need to stall less often. The pseudocode of the

branchless decoder was shown in Algorithm 3, and cannot buffer values, so it relies on

the L1 cache for fast access to previously accessed compressed integers.

In Figure 5.8 the throughput of all decoding approaches are shown. The branchless

streaming decoder is slightly slower than the previous streaming decoder when decom-

pressing a single vector. The branchless streaming decoder benefits less from decoding

multiple vectors concurrently in comparison to single vector decompression. For sin-

gle column decoding the branchless streaming decoder does not improve upon previous

decoders.

5.2.6 Full Decompression

All previous graphs showed the performance of the decoders when only decoding and

scanning the compressed data. In Figure 5.9 the full decompression performance of

the decoders is shown. With full decompression, the column is completely materialized

and written back to global memory. The figure shows that with full decompression

all decoders hit the same maximum throughput, as they are completely bottlenecked

by memory write throughput of writing decoded data to global memory. Efficiently

decoding data now matters less, as the amount of data written is constant and greater

than the amount of data read.
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Figure 5.7: Streaming buffer strategy throughput comparison for uint64 t columns. On
the left side the decoding throughput for single vector decoders are plotted, the right side
shows the decoding throughput of decoding four vectors concurrently. As for uint32 t

columns, a buffer size of two is best, but the differences in decoding throughput between
buffer strategies are smaller, as peak decoding throughput is lower than for uint32 t

columns.
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Figure 5.8: Comparison of decoding throughput of the branchless streaming decoder
with the FastLanesOnGPU decoder, the static decoder, and the best streaming decoder
with buffer. The branchless streaming decoder is close in performance to the buffering
decoder for single vector decoding, but benefits less from decoding multiple vectors
concurrently.
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Figure 5.9: Comparison of full decompression into RAM throughput of the Fast-
LanesOnGPU decoder, the static decoder, the best streaming decoder with buffer, and
the branchless streaming decoder. For full decompression into RAM the decoding per-
formance is bottlenecked by memory write throughput. This masks the efficiency of the
decoding approach, so for full decompression of data into RAM the decoding approach
does not matter.
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Figure 5.10: Comparison of FFOR decoding throughput when decoding multiple
columns concurrently. Note that the throughput is in vectors/columns/us, correcting
for the fact that with ten columns, ten times more data is loaded. Each vector in the
column is encoded with a random bitwidth between 0 and the maximum bitwidth for
that datatype. The FastLanesOnGPU decoder achieves high decoding throughput when
decoding a single column, but performance quickly deteriorates when decoding multiple
columns concurrently. The streaming decoder with buffer performs well for low number
of columns, but throughput deteriorates for higher number of columns. The branch-
less streaming decoder achieves a very stable, consistent throughput, for any number of
columns. Decompressing multiple vectors concurrently does not result in much higher
throughput for larger numbers for columns.
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5.2.7 Multi-Column

As the FastLanesOnGPU decoder’s performances tended to degrade when multiple

columns are scanned, the last microbenchmark for FFOR studies the performance of

the decoders when decoding up to ten columns concurrently. For the FastLanesOnGPU

decoder each warp fully decompresses a vector from each column before comparing the

values, whereas with the other decoders each warp decodes a single value from each

column, before comparing the values and scanning the next value in the lane. In Fig-

ure 5.10 the performance of the FastLanesOnGPU decoder, the static decoder, the

streaming decoder and the branchless streaming decoder are shown.

The FastLanesOnGPU decoder is the fastest decoder for FFOR up until decom-

pressing 7 columns. The bottleneck for FastLanesOnGPU is memory latency, as the

memory read throughput is not high and neither is the instruction throughput. The

other decoders suffer less from this latency problem as the occupancy is higher, there-

fore allowing the GPU to hide the latency of the read instructions better. For single

vector decoding, the throughput of the streaming decoder and the branchless streaming

decoder is similar. The streaming decoder achieves slightly higher throughput for smaller

numbers of columns, while the branchless streaming decoder achieves higher throughput

for large numbers of columns. Multivector decoding achieves higher throughput than

single vector decoding. The throughput of the branchless streaming decoder is consis-

tent, achieving the same throughput per vector independent of how many columns are

decoded. The branchy streaming decoder slightly suffers in terms of throughput when

decoding more columns.

The throughput of multi-column uint64 t decoding is again slower than decoding

uint32 t columns. The throughput of the streaming decoder suffers more from decoding

multiple columns than the throughput of the branchless streaming decoder. The benefit

of multivector decoding is less pronounced, with the branchless streaming decoder now

almost not benefitting at all from decoding multiple vectors concurrently.

5.2.8 Summary

The alternative decoding approaches to FastLanesOnGPU decoding did not achieve

higher decoding throughput than the original decoder in single vector decoding. Static

decoding performed worst. Streaming decoding is faster, especially when keeping mul-

tiple packed integers in buffers. Branchless streaming decoding is slightly slower than

normal streaming decoding in single column decoding, but performs slightly better, and

more consistent, when decoding values from multiple columns concurrently. Decoding

multiple vectors is beneficial for FFOR, as multivector decoding can help hide the high

memory read latency. Decoding uint64 t columns is slower than decoding uint32 t

columns. Fully decompressing columns is bottlenecked by memory write throughput,

causing all decoders to achieve the same decompression throughput.
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5.3 ALP Microbenchmarks

In this section ALP decoding is benchmarked. ALP decoding builds upon FFOR de-

coding. After FFOR decoding a value, ALP applies some casts and multiplications to

map the decoded integer into a floating point datatype. As the FFOR step is the same,

we can reuse the branchless streaming decoder for this stage of ALP. The branchless

streaming decoder was chosen as it offers constant and consistent decoding performance.

In the final multi-column benchmark the FastLanesOnGPU and normal streaming de-

coder are also tested in combination with ALP. After the FFOR decoding, values that

were actually exceptions need to be patched with their exception value. This exception

patching will be the primary subject of this section, and in the microbenchmarks in this

section the number of exceptions per vector will be varied to study the performance of

the exception patchers. The exceptions are uniformly and randomly distributed within

the vector. The value bit width is random per vector, and in the range of [3− 8].

5.3.1 ALP

The first microbenchmark compares the performance of static ALP patching (Algo-

rithm 4) with streaming ALP patching (Algorithm 5). To avoid confusion with stream-

ing FFOR decoding, streaming ALP patching will be referred to as just ALP patching.

Static ALP patching needs to scan the exception positions vector from the start for each

value that is decoded. The (streaming) ALP decoder however can benefit from the fact

that for patching the previous value, part of the exception positions vector is already

scanned, and cannot contain the position of the current value, saving a costly rescan.

In Figure 5.11 the performance of both patchers is shown. (Streaming) ALP patch-

ing is much faster than static ALP patching, having more than twice the throughput

for most exception counts. However, single vector FFOR decoding reaches a decoding

throughput of 100 vectors per microsecond, but ALP achieves only 20 vectors per mi-

crosecond for most exception counts. Patching exceptions is an expensive additional

step that requires more instructions when decoding a single value at a time, as you need

to check for each value whether the position is in the exception list. When decoding

an entire vector on the CPU, one can simply replace values in the decoded data array,

requiring fewer instructions. Also, neither of the patchers benefit much from multi-

vector decoding. Multi-vector decoding even has lower throughput when patching more

than ten exceptions, or when patching double exceptions. Interestingly, patching float

exceptions is almost as slow as patching double exceptions.

5.3.2 G-ALP

In Subsection 4.2.2 a new exception layout is proposed, that can be processed with a

much simpler exception patching algorithm as, shown in Algorithm 6. In Figure 5.12 the

performance of two variants of this algorithm are shown. The first variant is branchy,

57



0 10 20 30 40 50
Exception count

0

20

40

60

80

Th
ro

ug
hp

ut
 (v

ec
s/

us
)

f32, Single vector
ALP Static
ALP

0 10 20 30 40 50
Exception count

0

20

40

60

80

Th
ro
ug

hp
ut
 (v

ec
s/
us

)

f32, Multivector (4)
ALP Static
ALP

0 10 20 30 40 50
Exception count

0

20

40

60

80

Th
ro

ug
hp

ut
 (v

ec
s/

us
)

f64, Single vector
ALP Static
ALP

0 10 20 30 40 50
Exception count

0

20

40

60

80

Th
ro
ug

hp
ut
 (v

ec
s/
us

)

f64, Multivector (4)
ALP Static
ALP

Figure 5.11: Decoding throughput of the static ALP patcher and the ALP patcher, both
use the branchless streaming decoder for decoding the bitpacked integers. The bitwidth
for each vector is random between 3 and 8. The x-axis shows the number of exceptions
per vectors, showing the decoding throughput of each patching approach for a various
number of exceptions per vector. Decoding multiple vectors concurrently now results in
very little increased throughput, for some numbers of exceptions even resulting in less
throughput. The ALP patcher is better than the static ALP patcher for any number of
exceptions per vector.
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Figure 5.12: Decoding throughput of the G-ALP patcher and the branchless G-ALP
patcher, both use the branchless streaming decoder for decoding the bitpacked integers.
The bitwidth for each vector is random between 3 and 8. Branchless G-ALP achieves a
higher, and more constant decoding throughput than the G-ALP patcher. The decoding
throughput of the G-ALP patchers is more than twice as much as the throughput of
the ALP patchers for almost all numbers of exceptions per vector. Decoding multiple
vectors concurrently results in slightly lower decoding throughput.
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the second is branchless. The branchless variant is more consistent and has slightly

higher throughput than the branchy variant, except for the smallest exception counts.

The throughput of the float G-ALP patchers is almost twice as high as that of the

ALP patchers, decoding almost 40 vectors per microsecond. However, for double the

decoding throughput is the same, at 20 vectors per microsecond. In comparison to the

ALP patchers, the G-ALP patchers are less sensitive to an increasing exception count,

still achieving high throughput even for vectors that contain 50 exceptions. The G-ALP

patchers are less sensitive than ALP patchers, as there is less warp divergence when

a vector contains more exceptions. With G-ALP the maximum amount of exception

positions that a thread needs to scan per value it decodes is 1. With ALP the maximum

amount of exception positions that a thread needs to scan when decoding a single value

is equal to the number of lanes, when the thread is assigned the last lane and all lanes

contain an exception.

5.3.3 G-ALP With Buffering

In Subsection 4.2.3 an optimization of G-ALP was discussed, in which the next exception

position and exception value is buffered in the registers to reduce the memory read la-

tency of fetching those values from cache. In Figure 5.13 the throughput of the G-ALP

patchers with this optimization is shown. The throughput of the branchless G-ALP

patcher barely changes. However, the branchy variant now beats the branchless variant,

achieving a throughput of close to 50 vectors per microsecond. For multivector decom-

pression, the throughput is even higher, reaching almost 60 vectors per microsecond.

These are significant improvements upon the G-ALP patchers in the previous section,

achieving almost 50% more throughput by buffering the next exception position and

exception value in registers.

The throughput of patching double does not change however, and peaks at patching

20 vectors per microsecond, just as the previous patchers.

5.3.4 Multi-Column

As for the FFOR decoders, the ALP patchers are also evaluated in a multi-column

decoding benchmark. Figure 5.14 and Figure 5.15 show the decoding performance for all

patchers, and for the three best decoders; the FastLanesOnGPU decoder, the streaming

decoder that rotates registers as a buffer strategy, and the branchless streaming decoder.

Each column is packed with a random bit width in the range [3, 8] and a constant

exception count of 20.

The decoding throughput of the patchers in combination with FastLanesOnGPU is

good for decoding single columns. However, the throughput is much worse than the

other decoders when decoding two columns or more, achieving just half the throughput

of the other decoders for high numbers of columns. The streaming decoder is better
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Figure 5.13: Decoding throughput of the G-ALP patcher with exception buffer and
the branchless G-ALP patcher with exception buffer, both use the branchless streaming
decoder for decoding the bitpacked integers. The bitwidth for each vector is random
between 3 and 8. With the exception buffer the throughput of the branchless G-ALP
patcher is not improved. For the normal G-ALP patcher however, the throughput is
improved for all exception counts, especially the lower exception counts. For the normal
G-ALP patcher decoding multiple vectors concurrently now also improves throughput
again. The decoding throughput of the double vectors is not increased, the decoding
throughput of those vectors is bottlenecked at around 20 vectors/µs, due to the limited
double instructions throughput.
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Figure 5.14: Comparison of the decoding throughput for multiple ALP patchers for
float columns when decoding multiple columns concurrently. All patchers use the
FastLanesOnGPU decoder for decoding the bitpacked integers. The bitwidth is random
per vector, between 3 and 8, and the number of exceptions for each vector is constant
at 20 exceptions per vector. The decoding throughput heavily degrades for all patchers
when decoding multiple columns concurrently, mainly due to the fact that the decoding
throughput of the underlying integer decoder degrades when decoding multiple columns
concurrently.
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Figure 5.15: Comparison of the decoding throughput for multiple ALP patchers for
float columns when decoding multiple columns concurrently. The top graph shows
the decoding throughput of the patchers in combination with the best streaming de-
coder with buffer, the bottom graph shows the decoding throughput of the patchers
in combination with the branchless streaming decoder. The bitwidth is random per
vector, between 3 and 8, and the number of exceptions for each vector is constant at
20 exceptions per vector. Both decoders perform better than the FastLanesOnGPU
decoder in Figure 5.14. The streaming decoder with buffer is better when decoding a
single column, but the branchless streaming decoder is better when decoding multiple
columns concurrently. The single vector G-ALP patcher with buffer achieves the highest
decoding throughput. For some numbers of columns the branchless version is better,
for other numbers of columns the normal one is better. Multivector patching results in
lower throughput when decoding higher numbers of columns concurrently.
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than the branchless streaming decoder when decoding a single column, but branchless

streaming is faster when two or more columns are decoded. Additionally, multivector

decoding now only improves throughput when decoding one or two columns in parallel,

with a heavy performance drop-off in comparison to single vector decoding four or more

columns.

For the branchless streaming decoder, the best patcher is the single vector G-ALP

with buffer patcher. This patcher achieves slightly higher throughput for low column

counts, while performing approximately the same as the branchless G-ALP with buffer

patcher for higher column counts.

In Figure 5.16 the performance of the streaming decoder and branchless streaming

decoder for decoding double columns is shown. The performance pattern is almost the

same as for decoding float columns, with the exception that multivector decoding is

now worse in all cases than single vector decoding. The branchless streaming decoder is

best in all cases, however the decoding throughput does not exceed far beyond 20 vectors

per column per microsecond, as was the case in the previous micro-benchmarks. This

can be caused by the fact that there are fewer double precision floating-point instruction

pipelines than single-precision floating-point pipelines.

5.3.5 Summary

The FastLanesOnGPU decoder in combination with ALP results in low throughput when

decoding multiple columns simultaneously. The branchless streaming decoder performed

best, offering consistent decoding throughput, even when decoding multiple columns

simultaneously. Multi-vector decoding is slow in combination with ALP when decoding

more than two columns in parallel, diminishing the value of a multivector decoding

API, as the performance is not consistent across compression schemes, and can even

degrade performance in comparison to single vector decoding, while also making the

API more complex. Decoding float columns is faster than decoding double columns.

The throughput of decoding double columns does not exceed 25 vectors per microsecond,

while the throughput of decoding float columns can reach speeds of up to 75 vectors

per microsecond, approaching FFOR single vector decoding speeds.

5.4 Real Data Benchmarks

ALP and G-ALP are compared to Thrust and nvCOMP in a scenario where compressed

data exists in the GPUs RAM and needs to be scanned. The scan operator will be the

same operator as used in the microbenchmarks for FFOR and ALP. Executing the scan

requires the nvCOMP compressors to first fully decompress the data, write it to RAM,

and then launch a separate kernel that reads the data from RAM and executes the scan.

ALP and G-ALP do not have to fully decompress the data, and can launch a scan kernel

that executes the scan by loading compressed data directly.
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Figure 5.16: Comparison of the decoding throughput for multiple ALP patchers for
double columns when decoding multiple columns concurrently. The top graph shows
the decoding throughput of the patchers in combination with the best streaming de-
coder with buffer, the bottom graph shows the decoding throughput of the patchers in
combination with the branchless streaming decoder. The bitwidth is random per vector,
between 3 and 8, and the number of exceptions for each vector is constant at 20 excep-
tions per vector. The branchless streaming decoder is again the best decoder, resulting
in more constant decoding throughput for high numbers of columns. The single vector,
branchless G-ALP patcher with buffer has the highest decoding throughput. None of
the patchers exceed a throughput of 25 vectors per column per µs.
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Thrust, an NVIDIA library consisting of ready-made kernels, contains a scan op-

erator as well. Thrust is also benchmarked to prove that executing a scan by loading

compressed data is faster than loading normal data.

The nvCOMP compressors were configured to read the data as a stream of bytes, as

nvCOMP currently does not contain compressors for float or double data.

The benchmark is executed on real datasets, collected from the ALP dataset[5], the

public BI dataset[12], and the FC-Bench dataset[9]. Columns in those datasets that

were not compressible with ALP or only with ALPrd were left out of the evaluation.

For reasonable benchmarks the columns need to be large enough, to be able to saturate

all SMs with multiple thread blocks for consistent measurements. In order to achieve

this, columns of data that were smaller than 25600 vectors were repeatedly copied until

they reached a size of 25600 vectors. Columns that were larger than 25600 vectors were

cut off at 25600 vectors. This was done as some nvCOMP compressors crashed during

compression of larger data sizes as they ran out of GPU RAM memory. These crashes

are remarkable, as it is therefore hard to reliably compress more than 400 MB of double

precision floating-point data on a GPU with 6 GB of RAM.

In these benchmarks, throughput is defined as the uncompressed size of the data,

divided by the total execution time of the kernel.

5.4.1 Compression Ratio

A boxplot with the compression ratio for each compressor is shown in Figure 5.17. The

exact bits per value per compressor and column are listed in Table B.1 and Table C.1.

The exact compression ratio per compressor and column are listed in Table B.2 and

Table C.2. For ALP and G-ALP, the average value bit width and average exception

count per vector are listed in Table B.3 and Table C.3.

The float columns are less compressible than the double columns. For the float

columns, ALP, G-ALP and nv-zstd achieve the best compression ratios, with median

compression ratios of 1.70, 1.65 and 1.95 respectively. nv-LZ4, nv-Snappy, nv-Deflate

and nv-GDeflate have median compression ratios of 1.33 and 1.43, 1.58 and 1.58 respec-

tively. Bitcomp and BitcompSparse barely achieve any compression and have median

compression ratios of 1.10 and 1.10.

The double columns are more compressible. ALP, G-ALP, and nv-zstd are again

the strongest compressors, obtaining median compression ratios of 4.00, 3.93, and 3.72

respectively. nv-LZ4, nv-Snappy, nv-Deflate and nv-GDeflate have median compression

ratios of 2.39 and 2.41, 1.35 and 1.34 respectively. nv-Deflate and nv-GDeflate therefore

have a slightly lower median compression ratio than for the float columns. Bitcomp has

a median compression ratios of 1.08, and BitcompSparse a median compression ratio of

1.00, meaning that BitcompSparse is not able to compress the majority of the columns.
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Figure 5.17: Compression ratio comparison for every datasets for all compressors as
a boxplot. The single-precision floating-point data sets compression ratios are low for
all compressors, also due to the fact that float is a smaller data type than double,
so the decompressed size is relatively smaller. The median compression ratios for the
float datasets are similar for all compressors except nv-zstd, which achieved the highest
median compression ratio, and the bitcomp compressors, which achieved the lowest
compression ratios. Nv-zstd, ALP and G-ALP get the best compression ratios for the
double datasets . G-ALP has a slightly lower compression ratio than ALP, which
is expected as the exception layout contains more metadata. All other compressors
achieve a lower compression ratio, with the Bitcomp compressors achieving almost no
compression.
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5.4.2 Filter Throughput

Now the scan throughput of all compressors and Thrust are compared. The results can

be found in Table B.4 and Table C.4. The throughput for each compressor and Thrust

is also plotted as a boxplot in Figure 5.18.

For float data, G-ALP achieves a median throughput of 131.71 GB/s, almost 5x

as large as the throughput of ALP, which is 27.52 GB/s. ALP only barely has higher

throughput than Thrust’s throughput of 20.71 GB/s. The median throughput of Bit-

comp and BitcompSparse are 32.84 GB/s and 37.36 GB/s beating Thrust. Presumably

Bitcomp and BitcompSparse store in a header which blocks are actually compressed,

completely skipping blocks of data that it could not compress. For many datasets Bit-

comp and BitcompSparse obtain no compression at all. The scan operator which loads

uncompressed data is faster to execute full scans than the general purpose scan operator

of Thrust, which is how Bitcomp and BitcompSparse manage to have a higher through-

put than Thrust. The median scan throughput of the other compressors is really low,

none exceeding 6 GB/s. Even though the compression ratio of nv-zstd is quite high,

the scan throughput on compressed data is only 2.31 GB/s, 57x smaller than the scan

throughput of G-ALP.

For double data, the throughput of G-ALP is slightly higher, at 148.34 GB/s. From

Figure 5.18 can also be seen that the boxplot is very narrow, indicating very consistent

scan throughput. The reason why the scan throughput on the real data columns is higher

than for the float columns, is because the double columns contain far fewer exceptions

per vector, as can be seen in Table B.3 and Table C.3. With the fewer amount of

exceptions, ALP now also has a much higher throughput than Thrust, Bitcomp and

BitcompSparse. The other compressors again do not achieve a median scan throughput

higher than 6 GB/s. Zstd has a median scan throughput of 2.28, 65x smaller than the

scan throughput of G-ALP.

The compression ratios and scan throughput per column and compressor are also

plotted as a scatter diagram in Figure 5.19 for float columns, and in Figure 5.20

for double columns. In both figures it is visible that ALP and G-ALP achieves both

high scan throughput and reasonable compression ratio. with most other compressor

dots located mainly in the bottom left corner, indicating both low scan throughput

and low compression ratio, with some compressors having a few dots further along the

compression ratio axis, but with minimal scan throughput.

5.4.3 Full Decompression Throughput into Global Memory

Additionally, the full decompression throughput is shown in Figure 5.21. With full

decompression each compressor fully decompresses the compressed data into the GPUs

RAM. For ALP and G-ALP this results in a lower throughput, as the bottleneck is

no longer reading compressed data, but writing the much larger decompressed data to
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Figure 5.18: Throughput comparison for the filter benchmark for every dataset for
all compressors. The ALP and G-ALP decoders are the fastest, achieving the high-
est throughput. G-ALP is faster than ALP, and much more consistent. None of the
nvCOMP general purpose compressors exceed a throughput of 10 GB/s. The Bitcomp
compressors achieve fairly high throughput, but these compressors barely compress the
data.

69



0 2 4 6 8 10 12
Compression ratio

100

101

102

Th
ro
ug

hp
ut
 (G

B/
s)
 o
n 
Lo
g 
sc
al
e

ALP
G-ALP
Thrust
nv-zstd
nv-LZ4
nv-Snappy
nv-Deflate
nv-GDeflate
Bitcomp
BitcompSparse

Figure 5.19: Compression ratio and throughput on log scale comparison for every com-
pressor for the filtering benchmark for all single precision floating-point datasets. Each
dot represents a single dataset decompressed by one compressor. From the scatter dia-
gram it is visible, that ALP’s and G-ALP’s throughput increases when the compression
ratio increases. For nv-Snappy and nv-zstd the reverse is true, the throughput decreases
when the compression ratio is increased. The deflate compressors seem to be insensitive
in regards to how compression ratio affects the throughput.
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Figure 5.20: Compression ratio and throughput comparison for every compressor for
the filtering benchmark for all double precision floating-point datasets. Each dot repre-
sents a single dataset decompressed by one compressor. All compressors achieve higher
compression ratios, with larger spreads in compression ratio and throughput. There no
longer appears to be a link between compression ratio and throughput for the nvCOMP
compressors. G-ALP seems to reach a decoding throughput limit for almost all com-
pression ratios, while ALP still decodes faster if the compression ratio is higher.
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Figure 5.21: Throughput comparison for fully decompressing every dataset into the
GPU’s RAM, for all compressors. The difference in decoding throughput between the
ALP, G-ALPand the nvCOMP compressors is now less pronounced in comparison to the
filter throughput benchmark, as the ALP compressors now have to also write the data
to RAM, costing a lot of memory throughput. Meanwhile the nvCOMP compressors
achieve a slightly higher throughput than in Figure 5.18 as they can skip the filtering
step, and were decompressing into RAM regardless.
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RAM. For the other compressors, however, this benchmark improves the throughput,

as it is no longer necessary to scan the data after decompressing the data into RAM,

essentially removing a step in the process. The exact decompression throughput data

can be viewed in Table B.5 and Table C.5.

G-ALP still has the highest throughput of all compressors, with a median decompres-

sion throughput of 73.20 GB/s for float columns, and 100.32 GB/s for double columns.

ALP has a median decompression throughput of 24.20 GB/s for float columns, and

78.24 GB/s. Bitcomp and BitcompSparse have a median decompression throughput of

43.09 GB/s and 49.56 GB/s respectively for float columns, and a median decompres-

sion throughput of 42.34 GB/s and 63.80 GB/s respectively for double columns. All

other compressors do not have a median decompression throughput higher than 6 GB/s.

nv-zstd has a median decompression throughput of 2.38 GB/s for float columns, and

a median decompression throughput of 2.34 GB/s for double columns.

5.4.4 Summary

The ALP, G-ALP and nv-zstd compressors achieve similar compression ratios for the real

data columns. However, with G-ALP, compressed data can be scanned more than 50x

faster than scanning data that is compressed by nv-zstd. All other compressors achieved

both lower compression ratios as well as lower scan and decompression throughput than

G-ALP. ALP performed worse than G-ALP, especially for the float columns, which

contained a large amount of exceptions. Scanning compressed data with G-ALP is even

faster than scanning normal data with NVIDIA’s scan operator in the Thrust library,

proving that loading compressed data can speed up memory read throughput bound

GPU kernels.
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Chapter 6

Conclusion

This thesis showed that the current state of the art compressors made by NVIDIA can be

beaten in both decompression throughput as well as compression ratio for floating-point

data by implementing ALP on the GPU. To implement ALP on the GPU, this thesis

first discussed why compression is valuable for GPUs, what heavy-weight compression

is, what light-weight compression is, and what the benefits of light-weight compression

are over heavy-weight compression. Then the FastLanes file format was discussed, both

how it can encode integers with FFOR compression and how floating-point data is

compressed using the ALP encoding. Finally, the nvCOMP compression library from

NVIDIA that contains both HWC as well as LWC encodings was discussed. The next

chapter provided an in-depth description of the internal hardware of NVIDIA GPUs.

The following chapter used this background knowledge on compression and GPU

internals, to create new decoding algorithms for FFOR, and a new exception layout to

patch exceptions for ALP, thereby creating G-ALP. Finally, the decoding throughput of

all decoders and exception patchers was thoroughly measured with microbenchmarks, on

both 32-bit as well as 64-bit data types. To prove that G-ALP achieves a higher decoding

throughput than the current state of the art in GPU floating-point data decompressors,

G-ALP was compared with all of NVIDIA’s compressors in the nvCOMP library on real

datasets.

This thesis consists of three main contributions. The first contribution of this thesis

is a newly optimized decoder for the FastLanes interleaved bitpacking format, that also

offers a new single value decoding API. This single value API offers fine-grained, high

throughput access to compressed data. With this API data can be left compressed in

RAM and directly accessed and read by GPU kernels. The second contribution of this

thesis is a new exception layout, which data-parallelizes the exception patching stage for

the FastLanes file format. The third contribution of this thesis is creating the G-ALP

decoder, a new GPU based floating-point data decoder that utilizes the new exception

layout to comprehensively beat the state of the art in floating-point data decompression

on GPUs.
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With these contributions it is possible to decompress floating-point data at high

throughput. This makes compression a viable technique for GPU workloads to save

PCIe link bandwidth to speed up data transfers to GPUs, and to store more data in the

GPU’s RAM. With the fine-grained, high-throughput, unobtrusive decoding API it is

also possible to decode data just before the data is processed within a data processing

kernel. This has two benefits for data intensive GPU workloads. The first benefit is that

this removes the need for a separate data decompression kernel. The second benefit is

that more RAM space can be saved and used for other purposes, because the data does

not need to be decompressed into RAM.

A paper was written based on the work of this thesis, which was accepted for the

International Workshop on Data Management on New Hardware (DaMoN). The paper

will be presented at the DaMoN workshop that is held with the ACM SIGMOD/PODS

conference in 2025 in Berlin.

6.1 Research Questions

To answer the research questions from Chapter 1, each question is individually revisited

and answered.

RQ 1: How should a general purpose API for single value decoding of bit-

packed data be implemented?

A general purpose API for high throughput single value decoding of light-weight

encodings should be able to both fully decompress encoded columns, and scan encoded

columns, at high throughput. For fully decompressing columns, the decoding algorithm

is not important. All FastLanes decoding approaches that were benchmarked in this

thesis were equally fast in fully decoding columns, as the decoders are completely bound

by memory write throughput. For scanning single columns, the FastLanesOnGPU de-

coder performs best. However, when decoding multiple columns concurrently, as can

be expected when executing real queries, the FastLanesOnGPU decoding performance

quickly deteriorates. The FastLanesOnGPU decoder suffers from decreased occupancy,

because the decoder processes entire lanes at a time.

To improve upon the FastLanesOnGPU decoder, a single value API is better. The

switch based decoding approach however does not perform well when decoding a single

value at a time. Instead, a branchless streaming decoder is better, offering consistent

performance in a variety of benchmarks. Even when decoding multiple columns the

decoding throughput is constant, achieving higher decoding throughput than the Fast-

LanesOnGPU decoder.

Decoding multiple vectors concurrently is promising for FFOR, achieving higher

throughput in all scenarios. However, when decoding multiple columns in ALP, the

decoding throughput is lower than the single vector decoding approach. The API for
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multivector decoding is also slightly more complex and inflexible. Therefore, as the

performance benefit is not consistent and not large enough, a general purpose decoding

API should only offer a single vector decoding API.

RQ 2: How can exceptions be efficiently patched on GPUs?

The original ALP exception layout cannot be efficiently processed on GPUs, as every

thread needs to read and process all values in the exception position array. For efficient

patching, each lane needs to be decoded independently from the other lanes. This

removes the need for a thread to scan positions that do not belong in the thread’s own

lane. This can be achieved by reordering the exception positions and exception values

by lane. Now threads can start reading exceptions positions beginning at their own

offsets in the exception positions array, reading only the minimal amount of exception

positions. To allow each thread to find their section efficiently does require additional

metadata, containing the offset of the lane section and the number of exceptions per

lane. The additional metadata does decrease the compression ratio slightly, but the

improved decoding throughput is significant and very consistent.

The decoding throughput of G-ALP does not exceed the memory throughput of the

GPU on which all benchmarks were executed. Unlike on the CPU, where data can be

processed faster by loading and decoding that data using ALP, the decoding throughput

of G-ALP is approximately equal to the normal data loading throughput. However,

because the loading throughput of decompressed data and the decoding throughput of

compressed data is approximately equal, it is still unnecessary to launch a separate

decompressing kernel and decompress data into RAM. The limited decoding speed is

due to limited double instruction throughput on GPUs, and the fact that the single

value patching approach uses more instructions to patch a value than the CPU patching

approach. On the CPU each value can be patched by loading the index and value of

an exception and issuing a write instruction to patch the exception in the decompressed

data array. With the single value decoding API on the GPU, the decoder needs to check

for each decoded value whether it was an exception, and then find the corresponding

exception value and patch the value. A specialized, purpose-built GPU kernel might be

able to patch exceptions more efficiently using the CPU patching approach. But this

decoder would not be an unobtrusive, general purpose, single value API that does not

use any special memory or make any assumptions on which threads load which values,

which was the goal of the single value decoding API.

RQ 3: Can floating-point data be decoded faster with ALP than with common

GPU compression schemes?

G-ALP, which is ALP but with the new data-parallel exception layout, beats all

compressors in the nvCOMP NVIDIA library, the state of the art in floating-point data
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decompression on GPUs. G-ALP can fully decompress data faster than nvCOMP’s com-

pressor by an order of magnitude. G-ALP also achieves a higher compression ratio, only

being equalled by nv-zstd. The difference in decoding throughput is even larger when

considering real world scenarios such as having to scan encoded data. nvCOMP’s com-

pressors first need to fully decompress data back into the GPU’s RAM, before launching

a separate kernel to scan the data. However, G-ALP is able to decode the data in the

same kernel that is scanning the data, allowing the kernel to load compressed data,

reducing the impact of the memory read throughput bottleneck. Due to this optimiza-

tion, scanning encoded floating-point data using G-ALP is even faster than scanning

unencoded data using Thrust, NVIDIA’s standard library of general purpose kernels.

6.2 Future Work

6.2.1 CPU Benchmarks Data Parallel Exception

The new exception layout proposed in this thesis was only tested for decoding through-

put on GPUs. No benchmarks were performed to investigate the impact on the encoding

throughput and the decoding throughput on CPUs. The exception encoding now re-

quires an ordering based on in which lane the exception occurred. Additionally, the new

layout does not require a total exception count per vector to be included in the format.

However, including this total exception count could speed up exception decoding on

CPUs, as otherwise the exception count needs to be extracted from the per lane head-

ers, which contain the lane’s exceptions count and offset. To adopt the new exception

layout for real world usage, the encoding and decoding throughput of the new exception

layout would need to be benchmarked on CPUs and compared to the performance of

the original ALP exception layout.

6.2.2 Benchmarking Other GPUs

All benchmarks in this thesis were executed on NVIDIA GPUs. However not all compute

capabilities were tested in this thesis. To confirm that there are no significant deviations

in performance on different compute capabilities, the decoders need to be tested on more

NVIDIA GPUs. Additionally there are also other vendors of GPUs, such as AMD, Apple

and Intel. The GPU designs of these vendors differ significantly from each other, AMD

for example uses warps with 64 threads instead of 32. Benchmarking FastLanes decoding

on these GPUs would require either rewriting the CUDA code to other vendor-specific

languages, or require a rewrite into a language that runs on any GPU, such as webGPU.

6.2.3 New Benchmarks

There is currently no adequate benchmark to test the benefits of compression in database

GPU kernels, due to the lack of widely adopted GPU database systems. The advantages
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and disadvantages of compression could more thoroughly be proven if the decoding

process could be integrated in these kind of kernels. Important questions such as how

data should be transferred to the GPU and managed on the GPU remain open.

6.2.4 FastLanes GPU File Reader

This thesis implemented a decoding API for high-throughput bitpacking decoding and

high-throughput exception patching, but did not cover all encodings of the FastLanes

file format. A GPU decoder that is able to decompress, and is fully compliant with, the

FastLanes file format is still necessary. There are three benefits to implementing this

GPU decoder. First, the implementation would show that FastLanes can be used for

GPU workloads. Second, this decoder would enable more experimentation with using

compression and file formats in GPU workloads. Third, implementing this decoder

could show which format changes need to be made to efficiently decode the FastLanes

file format on GPUs.

The first step to creating a fully compliant GPU decoder for FastLanes would be to

create kernels that can fully decompress the data into RAM. These kernels are less per-

formance sensitive as write throughput will dominate the execution time, except perhaps

for any encodings that need to randomly access data during decoding such as the DICT

encoding. These kernels are therefore easier to implement. Fully decompressing into

RAM also does not require data processing kernels to be adapted to use the FastLanes

decoder, the kernels can simply read the decompressed data from RAM.

To test whether any changes to the FastLanes format need to be made in order to

efficiently decode the format on the GPU, the unobtrusive single-value decoding API

should be implemented for the other encodings in the format. To create an unobtrusive

single-value decoding API the API should preferably not rely on any special memory

allocations such as shared memory, should use few registers to enable the user of the

API to achieve high occupancy, and should be able to decompress the data into any kind

of memory region. This last requirement means that the decoding API should take a

pointer for the output memory, and should not dynamically access that output memory

as then the data cannot be decoded into registers.

A last step for enabling GPU workloads to use FastLanes would be to implement

a GPU encoder, to also be able to send the results of kernels back to the host in

compressed form over the PCIe link. This could also surface changes that could be

made to the format to enable fast encoding of data on GPUs.

Expression Encodings

In the FastLanes file format encodings can be combined using expression encodings,

where the result of one encoding is encoded in turn by another encoder. This makes

the decoding of columns dynamic. This is problematic for the single value decoding
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API, as the cost of selecting the right decoding functions can only be amortized across

a single value, instead of an entire lane or vector. Decoding ALP is already similar in

throughput to loading the data normally, so creating an unobtrusive API that can also

flexibly decode values at high throughput with a single value granularity might prove

difficult.

For single value decoding within the data processing kernel, there are at least two

possible approaches to decode columns that were encoded with expression encodings.

The first approach would be to simply select the right decoding function at runtime

for every single value that is decoded. This approach might be difficult to achieve high

throughput with. The second approach would be to compile data-processing kernels

at run time. The data processing kernels could then be compiled just in time to use

hardcoded, fused decoders for the expression that the target column was compressed

with.

However, the most simple approach to decoding expression encodings on the GPU

would be to simply create a decoding kernel for each encoding. Each decoding kernel

would then read data from RAM and decode that data back into RAM. But, this

requires memory in RAM to store all intermediary decoding results, and also space

for the decoded data. Additionally it requires a separate decompression step instead

of loading compressed data into data processing kernels directly. This approach could

be slightly improved by fusing the most common sequences of encodings into a single

decoding kernel.

Implications for the FastLanes File Format for GPU Decoding

While this thesis proved that the core bit interleaved layout of FastLanes can be decoded

at high throughput on GPUs, two possible modifications to the file format for efficient

GPU decoding arose from the research. The first modification would be to use the new

exception layout for exception patching if CPU encoding and decoding throughput is

not too negatively impacted by this new layout. The second modification, or rather

design guideline, would be for any encoding to store the decompressed size per vector,

rowgroup or column, unless the decompressed size can be derived from the compression

parameters. Knowing the decoded size is important as then enough memory can be

allocated on the GPU to decode the data without needing to overprovision.
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Appendix A

Benchmarking Environment

Software Version

g++ 12.3.0
Clang 14.0.0
nvcc 12.5
NVIDIA Driver 555.42.06
nvCOMP 4.2.0

Table A.1: Versions of all software used in benchmarking.

GPU Properties

Name GTX 1060 6GB
Compute Capability 6.1
Shared memory 96 KB
L1 Cache 48 KB
L2 Cache 1536 KB
RAM 6 GB
Memory bandwidth 192.2 GB/s
Clock speed 1506 MHz
Warps per SM 64
SM 20

Table A.2: Hardware specifications of the GPU that used in all benchmarks in this
thesis.
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Average 18.32 18.82 17.15 24.63 22.64 19.55 19.64 28.54 28.38
Median 18.85 19.35 16.39 24.01 22.33 20.19 20.29 29.21 29.11

CMSprovider-8-line srvc cnt 11.44 11.94 12.97 23.77 18.78 14.97 15.06 31.61 31.50
CityMaxCapita-13-lpf 17.08 17.58 14.46 21.67 20.75 22.30 22.39 26.19 28.03
MedPaymenT1-8-line srvc cnt 12.11 12.61 13.27 23.80 19.05 15.06 15.16 31.75 31.73
PanCreactomy1-8-line srvc cnt 11.93 12.43 13.23 23.78 19.00 15.03 15.12 31.74 31.72
Physicians-8-line srvc cnt 12.11 12.61 13.27 23.80 19.05 15.06 15.16 31.75 31.73
Telco-110-rechrg total load p1 13.21 13.71 14.50 23.61 21.42 15.84 15.93 30.16 30.24
Telco-111-rechrg total load p2 12.12 12.62 13.12 20.72 19.70 15.25 15.34 26.85 27.17
Telco-112-rechrg total load p3 10.31 10.81 10.12 21.27 15.10 11.85 11.94 24.81 24.09
Telco-113-rechrg total load p4 9.25 9.75 9.03 16.50 13.71 11.78 11.87 21.88 22.20
Telco-114-rechrg total load p6 14.11 14.61 16.08 24.01 24.12 17.81 17.90 30.18 30.47
Telco-151-total mins p1 25.35 25.85 23.37 29.13 28.20 25.05 25.14 29.76 29.85
Telco-152-total mins p2 25.72 26.22 23.42 28.60 28.63 24.86 24.96 31.68 30.88
Telco-153-total mins p3 20.30 20.80 19.01 25.73 24.19 21.59 21.69 27.15 27.00
Telco-156-total outgoing min p1 26.40 26.90 24.88 30.07 29.85 26.19 26.28 31.28 31.43
Telco-157-total outgoing min p2 25.02 25.52 22.87 28.62 27.58 24.78 24.87 28.79 28.92
Telco-158-total outgoing min p3 20.42 20.92 19.52 26.01 24.40 21.79 21.88 27.16 27.03
Telco-159-total outgoing min p4 19.03 19.53 18.75 25.14 23.57 21.43 21.52 25.47 25.36
Telco-171-total outgoing rev p1 30.05 30.55 26.07 30.90 30.83 26.94 27.03 31.73 31.84
Telco-22-chrgd rev p1 21.46 21.96 21.40 27.72 27.13 23.34 23.43 29.50 29.58
Telco-33-free mins p1 22.50 23.00 16.59 23.10 21.23 19.45 19.54 28.66 27.26
Telco-35-free mins p3 17.44 17.94 11.50 17.98 15.44 14.35 14.44 24.86 21.37
Telco-83-offnet rev p1 18.85 19.35 16.25 24.31 23.31 19.17 19.26 29.21 29.11
Telco-93-onnet mins p1 23.81 24.31 21.74 27.85 27.00 24.28 24.38 29.55 29.59
Telco-95-onnet mins p3 19.80 20.30 17.01 24.02 22.33 20.44 20.54 26.86 26.51
Telco-96-onnet mins p4 18.09 18.59 16.39 23.64 21.57 20.19 20.29 25.06 24.81

Table B.1: Bits per value for each dataset and compressor. Lower is better, 64 bits per
value is the upper bound for compressing data. Best bits per value per dataset in green,
second best in yellow.
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Average 1.94 1.88 2.02 1.33 1.48 1.74 1.73 1.13 1.14
Median 1.70 1.65 1.95 1.33 1.43 1.58 1.58 1.10 1.10

CMSprovider-8-line srvc cnt 2.80 2.68 2.47 1.35 1.70 2.14 2.12 1.01 1.02
CityMaxCapita-13-lpf 1.87 1.82 2.21 1.48 1.54 1.43 1.43 1.22 1.14
MedPaymenT1-8-line srvc cnt 2.64 2.54 2.41 1.34 1.68 2.12 2.11 1.01 1.01
PanCreactomy1-8-line srvc cnt 2.68 2.57 2.42 1.35 1.68 2.13 2.12 1.01 1.01
Physicians-8-line srvc cnt 2.64 2.54 2.41 1.34 1.68 2.12 2.11 1.01 1.01
Telco-110-rechrg total load p1 2.42 2.33 2.21 1.36 1.49 2.02 2.01 1.06 1.06
Telco-111-rechrg total load p2 2.64 2.54 2.44 1.54 1.62 2.10 2.09 1.19 1.18
Telco-112-rechrg total load p3 3.10 2.96 3.16 1.50 2.12 2.70 2.68 1.29 1.33
Telco-113-rechrg total load p4 3.46 3.28 3.54 1.94 2.33 2.72 2.70 1.46 1.44
Telco-114-rechrg total load p6 2.27 2.19 1.99 1.33 1.33 1.80 1.79 1.06 1.05
Telco-151-total mins p1 1.26 1.24 1.37 1.10 1.13 1.28 1.27 1.08 1.07
Telco-152-total mins p2 1.24 1.22 1.37 1.12 1.12 1.29 1.28 1.01 1.04
Telco-153-total mins p3 1.58 1.54 1.68 1.24 1.32 1.48 1.48 1.18 1.19
Telco-156-total outgoing min p1 1.21 1.19 1.29 1.06 1.07 1.22 1.22 1.02 1.02
Telco-157-total outgoing min p2 1.28 1.25 1.40 1.12 1.16 1.29 1.29 1.11 1.11
Telco-158-total outgoing min p3 1.57 1.53 1.64 1.23 1.31 1.47 1.46 1.18 1.18
Telco-159-total outgoing min p4 1.68 1.64 1.71 1.27 1.36 1.49 1.49 1.26 1.26
Telco-171-total outgoing rev p1 1.06 1.05 1.23 1.04 1.04 1.19 1.18 1.01 1.00
Telco-22-chrgd rev p1 1.49 1.46 1.50 1.15 1.18 1.37 1.37 1.08 1.08
Telco-33-free mins p1 1.42 1.39 1.93 1.39 1.51 1.65 1.64 1.12 1.17
Telco-35-free mins p3 1.83 1.78 2.78 1.78 2.07 2.23 2.22 1.29 1.50
Telco-83-offnet rev p1 1.70 1.65 1.97 1.32 1.37 1.67 1.66 1.10 1.10
Telco-93-onnet mins p1 1.34 1.32 1.47 1.15 1.19 1.32 1.31 1.08 1.08
Telco-95-onnet mins p3 1.62 1.58 1.88 1.33 1.43 1.57 1.56 1.19 1.21
Telco-96-onnet mins p4 1.77 1.72 1.95 1.35 1.48 1.58 1.58 1.28 1.29

Table B.2: Compression ratio floats datasets. Best compression ratio per dataset in
green, second best in yellow.
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Average 14.08 89.21 18.32 18.82 1.94 1.88
Median 14.42 101.30 18.85 19.35 1.70 1.65

CMSprovider-8-line srvc cnt 10.99 8.49 11.44 11.94 2.80 2.68
CityMaxCapita-13-lpf 15.24 38.07 17.08 17.58 1.87 1.82
MedPaymenT1-8-line srvc cnt 11.59 10.08 12.11 12.61 2.64 2.54
PanCreactomy1-8-line srvc cnt 11.16 15.42 11.93 12.43 2.68 2.57
Physicians-8-line srvc cnt 11.58 10.09 12.11 12.61 2.64 2.54
Telco-110-rechrg total load p1 13.02 2.87 13.21 13.71 2.42 2.33
Telco-111-rechrg total load p2 11.78 6.15 12.12 12.62 2.64 2.54
Telco-112-rechrg total load p3 9.65 12.94 10.31 10.81 3.10 2.96
Telco-113-rechrg total load p4 8.61 12.38 9.25 9.75 3.46 3.28
Telco-114-rechrg total load p6 13.66 8.53 14.11 14.61 2.27 2.19
Telco-151-total mins p1 16.52 187.09 25.35 25.85 1.26 1.24
Telco-152-total mins p2 17.44 175.42 25.72 26.22 1.24 1.22
Telco-153-total mins p3 15.24 106.89 20.30 20.80 1.58 1.54
Telco-156-total outgoing min p1 17.99 178.30 26.40 26.90 1.21 1.19
Telco-157-total outgoing min p2 16.05 190.21 25.02 25.52 1.28 1.25
Telco-158-total outgoing min p3 15.22 109.79 20.42 20.92 1.57 1.53
Telco-159-total outgoing min p4 13.71 112.35 19.03 19.53 1.68 1.64
Telco-171-total outgoing rev p1 21.14 188.84 30.05 30.55 1.06 1.05
Telco-22-chrgd rev p1 16.63 101.92 21.46 21.96 1.49 1.46
Telco-33-free mins p1 14.42 171.22 22.50 23.00 1.42 1.39
Telco-35-free mins p3 9.38 170.87 17.44 17.94 1.83 1.78
Telco-83-offnet rev p1 16.19 55.62 18.85 19.35 1.70 1.65
Telco-93-onnet mins p1 16.47 155.31 23.81 24.31 1.34 1.32
Telco-95-onnet mins p3 15.00 101.30 19.80 20.30 1.62 1.58
Telco-96-onnet mins p4 13.34 100.11 18.09 18.59 1.77 1.72

Table B.3: Average value bit width, average number of exceptions per vector, and the
bits per value and compression ratios for both ALP and G-ALP per double precision
floating-point dataset. Value bit width refers to how many bits were used to encode
values in the packed vectors, bits per value refers to the compressed data size in bits
divided by total number of compressed values.
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Average 42.65 141.60 20.59 2.43 4.52 4.19 0.88 5.58 30.44 34.75
Median 27.52 131.71 20.71 2.31 4.13 3.17 0.87 5.56 32.84 37.36

CMSprovider-8-line srvc cnt 76.43 173.60 20.77 1.84 2.99 2.84 0.89 5.67 18.92 26.60
CityMaxCapita-13-lpf 42.52 149.42 20.70 1.99 3.51 2.93 0.87 5.56 23.19 25.20
MedPaymenT1-8-line srvc cnt 69.20 172.20 20.88 1.85 2.96 2.88 0.89 5.67 18.84 26.08
PanCreactomy1-8-line srvc cnt 61.04 170.07 20.64 1.85 3.01 2.93 0.88 5.66 20.10 25.68
Physicians-8-line srvc cnt 69.40 171.84 20.79 1.85 2.95 2.91 0.89 5.65 18.86 25.77
Telco-110-rechrg total load p1 91.54 175.34 20.60 2.02 3.31 2.18 0.89 5.62 32.52 36.47
Telco-111-rechrg total load p2 88.09 175.84 20.79 2.27 3.71 2.38 0.90 5.65 34.32 38.55
Telco-112-rechrg total load p3 69.74 171.26 19.85 2.14 3.15 3.00 0.91 5.71 24.62 29.71
Telco-113-rechrg total load p4 74.46 172.40 20.78 2.48 3.67 3.14 0.92 5.71 28.81 37.36
Telco-114-rechrg total load p6 71.32 167.67 20.56 2.22 3.88 2.23 0.89 5.62 38.14 40.00
Telco-151-total mins p1 19.37 111.96 20.41 3.07 6.23 6.87 0.87 5.53 35.78 39.36
Telco-152-total mins p2 19.67 107.03 20.01 2.62 6.19 5.35 0.87 5.51 32.59 38.06
Telco-153-total mins p3 25.11 130.06 20.84 2.68 4.83 4.51 0.86 5.53 33.57 37.77
Telco-156-total outgoing min p1 20.07 111.87 20.74 2.95 6.82 7.30 0.86 5.50 36.63 40.68
Telco-157-total outgoing min p2 19.18 111.73 20.73 3.28 6.78 8.43 0.86 5.53 35.77 38.66
Telco-158-total outgoing min p3 26.49 129.56 19.99 2.78 5.20 5.10 0.87 5.51 34.91 37.58
Telco-159-total outgoing min p4 26.21 131.09 20.72 3.16 5.54 6.24 0.87 5.55 32.84 36.14
Telco-171-total outgoing rev p1 19.24 107.40 20.41 3.21 8.20 8.82 0.86 5.42 38.79 42.61
Telco-22-chrgd rev p1 27.52 129.16 20.72 2.75 5.03 4.30 0.87 5.54 37.65 39.23
Telco-33-free mins p1 19.22 118.83 20.86 1.99 4.22 3.04 0.86 5.58 25.26 29.35
Telco-35-free mins p3 18.53 127.92 20.21 2.13 4.22 3.17 0.88 5.66 22.43 29.18
Telco-83-offnet rev p1 35.57 138.80 20.69 1.99 3.52 2.40 0.86 5.57 34.44 37.40
Telco-93-onnet mins p1 21.59 119.34 20.71 2.63 4.96 4.62 0.86 5.51 36.41 38.06
Telco-95-onnet mins p3 27.15 131.71 20.54 2.31 4.13 3.33 0.87 5.56 33.75 36.38
Telco-96-onnet mins p4 27.69 133.90 20.83 2.60 4.12 3.75 0.87 5.56 31.76 36.82

Table B.4: Throughput (GB/s) filtering floats datasets. Best throughput per dataset in
green, second best in yellow.
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Average 34.43 75.52 2.48 4.67 4.34 0.88 5.78 39.50 46.28
Median 24.20 73.20 2.38 4.32 3.27 0.88 5.76 43.09 49.56

CMSprovider-8-line srvc cnt 57.85 92.17 1.86 3.06 2.90 0.89 5.90 22.22 31.38
CityMaxCapita-13-lpf 35.26 80.81 2.03 3.59 3.00 0.87 5.77 30.54 31.72
MedPaymenT1-8-line srvc cnt 52.82 90.87 1.88 3.03 2.93 0.89 5.89 24.00 33.10
PanCreactomy1-8-line srvc cnt 48.05 90.48 1.88 3.03 2.94 0.89 5.60 22.29 31.79
Physicians-8-line srvc cnt 52.83 91.07 1.88 3.01 2.96 0.88 5.90 23.05 31.89
Telco-110-rechrg total load p1 66.20 89.53 2.05 3.39 2.26 0.89 5.83 44.08 48.05
Telco-111-rechrg total load p2 64.25 91.55 2.31 3.77 2.45 0.90 5.85 44.06 51.84
Telco-112-rechrg total load p3 53.52 93.71 2.17 3.24 3.08 0.92 5.94 31.25 38.02
Telco-113-rechrg total load p4 56.98 96.30 2.55 3.70 3.27 0.92 5.90 36.62 48.44
Telco-114-rechrg total load p6 53.61 86.98 2.26 3.93 2.27 0.89 5.83 51.15 55.28
Telco-151-total mins p1 17.68 57.03 3.14 6.51 7.34 0.87 5.73 47.74 54.33
Telco-152-total mins p2 18.14 57.31 2.68 6.53 5.56 0.86 5.71 40.07 50.40
Telco-153-total mins p3 23.94 71.78 2.72 5.01 4.66 0.86 5.76 43.01 49.94
Telco-156-total outgoing min p1 18.39 56.76 3.03 7.11 7.67 0.86 5.65 49.02 56.88
Telco-157-total outgoing min p2 17.23 55.66 3.35 6.86 8.99 0.87 5.73 47.65 52.83
Telco-158-total outgoing min p3 23.63 71.65 2.84 5.36 5.25 0.88 5.74 44.89 49.33
Telco-159-total outgoing min p4 23.49 73.02 3.23 5.78 6.54 0.88 5.76 42.06 49.56
Telco-171-total outgoing rev p1 17.67 53.62 3.28 8.67 9.34 0.86 5.72 50.14 58.85
Telco-22-chrgd rev p1 24.20 70.15 2.83 5.24 4.41 0.88 5.75 49.88 53.67
Telco-33-free mins p1 18.11 61.74 2.03 4.35 3.11 0.87 5.79 33.76 38.38
Telco-35-free mins p3 17.94 68.28 2.15 4.33 3.15 0.89 5.78 25.98 35.57
Telco-83-offnet rev p1 30.37 76.45 2.04 3.62 2.44 0.87 5.78 45.68 52.55
Telco-93-onnet mins p1 19.76 62.22 2.66 5.03 4.76 0.87 5.74 49.08 53.82
Telco-95-onnet mins p3 24.15 73.20 2.38 4.24 3.41 0.88 5.76 43.09 48.81
Telco-96-onnet mins p4 24.70 75.70 2.67 4.32 3.84 0.88 5.69 46.12 50.46

Table B.5: Throughput (GB/s) fully decompressing floats datasets. Best throughput
per dataset in green, second best in yellow.
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Average 19.26 19.51 18.60 26.31 27.03 41.66 41.84 49.74 55.12
Median 16.02 16.27 17.22 26.78 26.60 47.52 47.70 59.47 64.11

arade4 24.94 25.19 35.71 43.19 50.43 59.69 59.88 64.11 64.11
astro mhd f64 3.20 3.45 2.39 3.09 5.39 13.58 13.76 3.28 64.11
basel temp f 29.56 29.81 24.51 31.53 34.75 59.79 59.98 64.11 64.11
basel wind f 29.79 30.04 20.62 28.91 29.14 59.13 59.32 64.11 64.11
bird migration f 20.73 20.98 22.34 32.26 31.83 57.77 57.95 62.90 64.11
bitcoin f 26.84 27.09 13.64 16.49 28.19 58.14 58.32 64.11 64.11
bitcoin transactions f 36.22 36.47 39.85 47.06 54.21 60.15 60.33 64.03 64.11
city temperature f 10.73 10.98 17.93 27.60 26.60 33.09 33.27 61.16 63.47
cms1 36.23 36.48 26.02 33.80 32.32 53.05 53.23 49.68 63.88
cms25 41.09 41.34 57.97 61.39 61.65 60.43 60.61 63.99 63.99
cms9 12.18 12.43 15.13 24.82 20.50 19.04 19.22 54.72 51.42
food prices 28.93 29.18 17.83 26.78 25.56 35.85 36.04 49.79 60.72
gov10 30.63 30.88 27.85 38.03 37.65 41.16 41.34 59.83 57.91
gov26 0.38 0.63 0.21 0.74 3.23 8.23 8.43 0.50 0.52
gov30 7.02 7.27 4.25 8.92 8.13 12.87 13.06 9.22 8.61
gov31 2.60 2.85 1.57 4.40 4.99 10.40 10.59 4.18 4.56
gov40 0.99 1.24 0.40 1.16 3.50 8.57 8.77 0.94 0.99
medicare1 39.37 39.62 31.06 38.59 38.71 53.87 54.06 57.74 64.09
medicare9 12.07 12.32 15.37 24.89 20.73 19.08 19.25 55.76 51.45
neon air pressure 16.71 16.96 15.89 23.99 24.01 55.44 55.62 46.35 64.11
neon bio temp c 9.96 10.21 17.22 27.65 29.08 45.59 45.77 62.39 64.11
neon dew point temp 13.57 13.82 25.06 32.91 37.05 56.61 56.80 64.11 64.11
neon pm10 dust 8.63 8.88 7.96 18.81 13.98 43.68 43.87 39.07 64.10
neon wind dir 16.02 16.27 25.07 33.38 36.77 48.62 48.81 64.11 64.11
nyc29 40.37 40.62 25.39 34.17 33.76 53.95 54.14 54.14 64.11
phone gyro f64 41.81 42.06 27.54 35.65 40.26 58.10 58.28 64.11 64.11
spain gas price f64 11.36 11.61 13.63 22.19 23.67 48.16 48.34 64.10 64.11
ssd hdd benchmarks f 16.15 16.40 13.99 23.77 22.27 32.90 33.08 59.47 64.11
stocks de 10.83 11.08 10.81 24.19 21.46 47.52 47.70 62.09 63.97
stocks uk 11.29 11.54 10.85 22.38 19.84 33.69 33.87 51.04 63.22
stocks usa c 6.93 7.18 8.64 22.89 18.41 43.26 43.44 56.72 64.11

Table C.1: Bits per value for each dataset and compressor. Lower is better, 64 bits per
value is the upper bound for compressing data. Best bits per value per dataset in green,
second best in yellow.
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Average 12.40 9.68 20.63 7.85 4.21 2.25 2.23 8.56 7.62
Median 4.00 3.93 3.72 2.39 2.41 1.35 1.34 1.08 1.00

arade4 2.57 2.54 1.79 1.48 1.27 1.07 1.07 1.00 1.00
astro mhd f64 20.01 18.56 26.78 20.73 11.88 4.71 4.65 19.50 1.00
basel temp f 2.16 2.15 2.61 2.03 1.84 1.07 1.07 1.00 1.00
basel wind f 2.15 2.13 3.10 2.21 2.20 1.08 1.08 1.00 1.00
bird migration f 3.09 3.05 2.87 1.98 2.01 1.11 1.10 1.02 1.00
bitcoin f 2.38 2.36 4.69 3.88 2.27 1.10 1.10 1.00 1.00
bitcoin transactions f 1.77 1.76 1.61 1.36 1.18 1.06 1.06 1.00 1.00
city temperature f 5.96 5.83 3.57 2.32 2.41 1.93 1.92 1.05 1.01
cms1 1.77 1.75 2.46 1.89 1.98 1.21 1.20 1.29 1.00
cms25 1.56 1.55 1.10 1.04 1.04 1.06 1.06 1.00 1.00
cms9 5.25 5.15 4.23 2.58 3.12 3.36 3.33 1.17 1.24
food prices 2.21 2.19 3.59 2.39 2.50 1.79 1.78 1.29 1.05
gov10 2.09 2.07 2.30 1.68 1.70 1.56 1.55 1.07 1.11
gov26 166.47 100.87 302.78 86.63 19.84 7.78 7.59 126.96 122.36
gov30 9.12 8.81 15.05 7.18 7.87 4.97 4.90 6.94 7.43
gov31 24.65 22.48 40.66 14.55 12.83 6.15 6.04 15.31 14.05
gov40 64.35 51.43 159.79 55.31 18.30 7.47 7.30 67.82 64.67
medicare1 1.63 1.62 2.06 1.66 1.65 1.19 1.18 1.11 1.00
medicare9 5.30 5.19 4.16 2.57 3.09 3.35 3.32 1.15 1.24
neon air pressure 3.83 3.77 4.03 2.67 2.67 1.15 1.15 1.38 1.00
neon bio temp c 6.43 6.27 3.72 2.31 2.20 1.40 1.40 1.03 1.00
neon dew point temp 4.72 4.63 2.55 1.94 1.73 1.13 1.13 1.00 1.00
neon pm10 dust 7.42 7.21 8.04 3.40 4.58 1.47 1.46 1.64 1.00
neon wind dir 4.00 3.93 2.55 1.92 1.74 1.32 1.31 1.00 1.00
nyc29 1.59 1.58 2.52 1.87 1.90 1.19 1.18 1.18 1.00
phone gyro f64 1.53 1.52 2.32 1.80 1.59 1.10 1.10 1.00 1.00
spain gas price f64 5.63 5.51 4.70 2.88 2.70 1.33 1.32 1.00 1.00
ssd hdd benchmarks f 3.96 3.90 4.57 2.69 2.87 1.95 1.93 1.08 1.00
stocks de 5.91 5.77 5.92 2.65 2.98 1.35 1.34 1.03 1.00
stocks uk 5.67 5.55 5.90 2.86 3.23 1.90 1.89 1.25 1.01
stocks usa c 9.24 8.92 7.40 2.80 3.48 1.48 1.47 1.13 1.00

Table C.2: Compression ratio doubles datasets. Best compression ratio per dataset in
green, second best in yellow.
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Average 16.84 29.91 19.26 19.51 12.40 9.68
Median 15.93 8.38 16.02 16.27 4.00 3.93

arade4 24.21 8.15 24.94 25.19 2.57 2.54
astro mhd f64 0.00 39.84 3.20 3.45 20.01 18.56
basel temp f 27.14 29.85 29.56 29.81 2.16 2.15
basel wind f 28.32 17.70 29.79 30.04 2.15 2.13
bird migration f 20.12 6.77 20.73 20.98 3.09 3.05
bitcoin f 26.10 8.38 26.84 27.09 2.38 2.36
bitcoin transactions f 30.00 78.46 36.22 36.47 1.77 1.76
city temperature f 10.64 0.11 10.73 10.98 5.96 5.83
cms1 25.27 139.15 36.23 36.48 1.77 1.75
cms25 40.41 7.72 41.09 41.34 1.56 1.55
cms9 9.91 28.03 12.18 12.43 5.25 5.15
food prices 18.88 127.53 28.93 29.18 2.21 2.19
gov10 26.30 54.27 30.63 30.88 2.09 2.07
gov26 0.06 2.99 0.38 0.63 166.47 100.87
gov30 2.80 52.93 7.02 7.27 9.12 8.81
gov31 1.88 8.10 2.60 2.85 24.65 22.48
gov40 0.01 11.54 0.99 1.24 64.35 51.43
medicare1 28.05 143.78 39.37 39.62 1.63 1.62
medicare9 11.25 9.42 12.07 12.32 5.30 5.19
neon air pressure 15.95 8.66 16.71 16.96 3.83 3.77
neon bio temp c 9.86 0.20 9.96 10.21 6.43 6.27
neon dew point temp 12.88 7.71 13.57 13.82 4.72 4.63
neon pm10 dust 8.22 4.12 8.63 8.88 7.42 7.21
neon wind dir 15.93 0.00 16.02 16.27 4.00 3.93
nyc29 39.73 7.10 40.37 40.62 1.59 1.58
phone gyro f64 33.80 101.50 41.81 42.06 1.53 1.52
spain gas price f64 9.71 19.99 11.36 11.61 5.63 5.51
ssd hdd benchmarks f 16.05 0.11 16.15 16.40 3.96 3.90
stocks de 10.57 2.27 10.83 11.08 5.91 5.77
stocks uk 11.14 0.84 11.29 11.54 5.67 5.55
stocks usa c 6.84 0.00 6.93 7.18 9.24 8.92

Table C.3: Average value bit width, average number of exceptions per vector, and the
bits per value and compression ratios for both ALP and G-ALP per double precision
floating-point dataset. Value bit width refers to how many bits were used to encode
values in the packed vectors, bits per value refers to the compressed data size in bits
divided by total number of compressed values.
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Average 102.19 146.35 37.98 4.83 7.72 6.42 0.91 5.64 33.51 44.84
Median 106.61 148.34 37.77 2.28 5.10 4.63 0.89 5.53 32.81 44.74

arade4 106.61 148.44 37.50 2.26 4.61 2.61 0.87 5.46 43.54 44.23
astro mhd f64 112.92 148.16 38.35 14.08 24.42 18.80 0.97 6.03 24.18 44.65
basel temp f 69.10 147.60 37.73 2.26 4.83 3.36 0.87 5.45 43.66 44.83
basel wind f 91.00 148.01 38.84 2.30 5.11 4.18 0.86 5.48 43.88 44.81
bird migration f 109.83 148.24 37.33 2.25 4.81 3.75 0.87 5.45 26.82 44.86
bitcoin f 105.61 148.36 37.38 4.88 10.17 5.14 0.88 5.47 44.00 44.66
bitcoin transactions f 48.36 143.98 39.20 2.26 4.68 2.76 0.86 5.47 40.60 44.74
city temperature f 142.72 148.56 36.99 1.81 4.91 5.39 0.94 5.65 21.12 27.68
cms1 36.35 129.62 37.67 2.92 5.94 5.06 0.87 5.49 22.17 44.57
cms25 100.64 147.91 37.47 3.62 16.46 15.57 0.87 5.50 39.99 44.54
cms9 79.98 148.11 37.38 2.24 5.15 7.71 0.96 5.80 19.88 29.01
food prices 41.58 143.82 37.71 2.25 4.93 3.99 0.90 5.49 21.51 31.81
gov10 57.16 146.30 38.39 1.92 4.29 2.71 0.88 5.61 26.22 34.89
gov26 128.22 148.94 37.68 28.60 21.88 18.91 1.01 6.43 54.85 69.12
gov30 67.10 147.92 37.49 7.93 9.97 8.85 0.98 5.90 44.68 54.17
gov31 133.42 148.35 37.69 12.89 14.50 12.81 0.99 6.07 49.76 64.74
gov40 125.35 148.70 38.43 22.36 21.24 15.49 1.01 6.40 54.37 68.63
medicare1 33.71 130.91 38.34 2.50 5.45 4.00 0.88 5.49 23.10 44.80
medicare9 109.66 148.38 37.95 2.25 5.05 8.22 0.96 5.81 20.07 29.06
neon air pressure 106.23 148.54 37.44 2.98 5.71 5.11 0.88 5.53 23.97 44.82
neon bio temp c 146.79 148.77 38.68 1.99 4.81 3.31 0.90 5.53 33.99 44.76
neon dew point temp 113.79 148.54 37.84 2.20 4.76 2.73 0.87 5.49 43.94 44.73
neon pm10 dust 130.29 148.32 37.70 2.66 5.58 5.65 0.90 5.53 21.07 44.64
neon wind dir 148.69 148.65 38.17 2.14 4.95 3.38 0.86 5.54 44.13 44.77
nyc29 100.63 147.82 38.44 2.67 5.17 3.74 0.89 5.51 21.70 44.73
phone gyro f64 47.81 133.21 37.97 2.48 5.01 3.45 0.87 5.49 44.04 44.84
spain gas price f64 101.52 148.34 38.43 2.65 4.93 3.67 0.89 5.48 43.66 44.79
ssd hdd benchmarks f 146.01 148.54 37.77 1.93 5.10 4.75 0.91 5.60 19.72 44.89
stocks de 133.86 148.53 39.00 2.13 4.90 4.52 0.89 5.51 32.81 44.39
stocks uk 143.77 148.61 38.87 2.09 5.19 4.63 0.90 5.58 24.00 42.01
stocks usa c 149.05 148.75 37.65 2.28 4.92 4.87 0.91 5.56 21.52 44.81

Table C.4: Throughput (GB/s) filtering doubles datasets. Best throughput per dataset
in green, second best in yellow.
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Average 75.78 95.26 5.39 8.49 6.99 0.92 5.92 45.15 65.84
Median 78.24 100.32 2.34 5.31 4.83 0.90 5.78 42.34 63.80

arade4 75.44 91.98 2.31 4.82 2.62 0.89 5.73 62.27 63.92
astro mhd f64 91.06 121.62 15.63 29.24 21.72 0.99 6.31 28.78 63.89
basel temp f 51.79 84.93 2.32 5.02 3.50 0.88 5.72 62.10 64.00
basel wind f 65.76 86.79 2.37 5.29 4.32 0.88 5.73 61.66 63.37
bird migration f 78.70 95.34 2.32 4.99 3.89 0.89 5.73 32.65 63.91
bitcoin f 73.66 90.26 5.11 10.99 5.44 0.89 5.74 62.15 63.65
bitcoin transactions f 36.82 69.54 2.32 4.86 2.85 0.88 5.73 55.37 63.85
city temperature f 102.16 107.02 1.86 5.14 5.66 0.95 5.91 24.48 34.26
cms1 29.86 59.55 3.02 6.22 5.27 0.89 5.76 26.06 63.20
cms25 68.71 79.07 3.76 18.63 17.63 0.88 5.72 54.34 63.39
cms9 60.83 96.80 2.31 5.37 8.20 0.98 6.09 23.12 36.09
food prices 33.80 66.03 2.30 5.19 4.28 0.92 5.85 25.08 40.45
gov10 44.36 77.93 1.98 4.45 2.82 0.90 5.82 31.74 45.56
gov26 117.51 131.29 35.67 25.81 21.95 1.03 6.81 86.81 128.23
gov30 53.14 102.71 8.53 10.87 9.76 1.00 6.26 63.44 84.45
gov31 110.11 121.33 14.50 16.34 14.13 1.01 6.41 75.64 112.91
gov40 110.62 127.48 26.90 24.92 17.62 1.03 6.69 84.96 126.87
medicare1 27.70 58.14 2.58 5.70 4.15 0.90 5.75 27.25 63.69
medicare9 80.24 101.18 2.31 5.31 8.87 0.98 6.10 23.11 36.13
neon air pressure 78.24 98.88 3.08 6.01 5.33 0.89 5.75 28.46 63.97
neon bio temp c 102.56 108.15 2.04 5.04 3.45 0.91 5.80 43.90 63.70
neon dew point temp 81.68 101.92 2.27 5.00 2.90 0.88 5.73 61.72 64.03
neon pm10 dust 94.27 108.01 2.75 5.85 5.96 0.91 5.81 24.81 63.25
neon wind dir 99.93 101.06 2.20 5.20 3.42 0.88 5.78 61.95 63.89
nyc29 68.81 79.35 2.75 5.41 3.90 0.90 5.76 25.34 64.05
phone gyro f64 37.38 61.62 2.58 5.26 3.62 0.89 5.73 62.13 63.87
spain gas price f64 74.90 100.32 2.74 5.19 3.83 0.91 5.78 61.22 63.87
ssd hdd benchmarks f 95.22 100.44 1.99 5.34 4.95 0.93 5.90 22.93 63.70
stocks de 95.02 105.60 2.20 5.11 4.76 0.90 5.78 42.34 62.85
stocks uk 100.05 105.85 2.16 5.38 4.83 0.92 5.87 28.48 58.26
stocks usa c 108.77 112.80 2.34 5.16 5.05 0.92 5.82 25.21 63.80

Table C.5: Throughput (GB/s) fully decompressing doubles datasets. Best throughput
per dataset in green, second best in yellow.
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